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ABSTRACT

In this dissertation one family of second-order and two families of higher-order

time integration algorithms are newly developed.

For the development of a new family of second-order time integration algorithms,

the original equation of structural dynamics is rewritten as two first order differ-

ential equations and one algebraic equation. The these equations are called mixed

formulations, because they include three different kinds of dependent variables (i.e.,

the displacement, velocity, and acceleration vectors). Equal linear (for the first sub-

step) and quadratic (for the second sub-step) Lagrange type interpolation functions

in time are used to approximate all three variables involved in the mixed formula-

tions, then the time finite element method and the collocation method are applied

to the velocity-displacement and velocity-acceleration relations of the mixed formu-

lations to obtain one- and two-step time integration schemes, respectively. Newly

developed one- and two-step time integration schemes are combined as one complete

algorithm to achieve enhanced computational features. Two collocation parameters,

which are included in the complete algorithm, are optimized and restated in terms

of the spectral radius in the high frequency limit (also called the ultimate spectral

radius) for the practical control of algorithmic dissipation. Both linear and non-

linear numerical examples are analysed by using the new algorithm to demonstrate

enhanced performance of it. The newly developed second-order algorithm can in-

clude the Baig and Bathe method and the non-dissipative case as special cases of its

family.

For the development of the first family of higher-order time integration algo-
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rithms, the displacement vector is approximated over the time interval by using the

Hermite interpolation functions in time. The residual vector is defined by substitut-

ing the approximated displacement vector into the equation of structural dynamics.

The modified weighted residual method is applied to the residual vector. The weight

parameters are used to restate the integral forms of the weighted residual statements

as algebraic forms, then these parameters are optimized by using the single-degree-

of-freedom problem and its exact solution to achieve improved accuracy and uncon-

ditional stability. Numerical examples are used to verify performances of the new

algorithms.

For the development of the second family of implicit higher-order time integration

algorithms, the mixed formulations that include three time dependent variables (i.e.,

the displacement, velocity and acceleration vectors) are used. The equal degree La-

grange type interpolation functions in time are used to approximate the dependent

variables involved in the mixed formulations, and the time finite element method

and the modified weighted residual method are applied to the velocity-displacement

and velocity-acceleration relations of the mixed formulations. Weight parameters are

used and optimized to achieve preferable attributes of time integration algorithms.

Specially considered numerical examples are used to discuss some fundamental limita-

tions of well-known second-order accurate algorithms and to demonstrate advantages

of using newly developed higher-order algorithms.
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1. INTRODUCTION

One common strategy of analysing partial differential equations (PDEs) associ-

ated with structural dynamics is to discretize the spatial domain of the PDEs first

based on separation of variables [1, 2, 3]. After spatially discretizing the PDEs by

employing proper numerical methods, a set of ordinary differential equations (ODEs)

in time is obtained. This set of ODEs is called the semi-discrete equation of motion

[1, 4, 5, 6] or the equation of linear structural dynamics [7, 8]. If the PDEs are linear,

the semi-discrete system can be written as

Mü(t) + Cu̇(t) + Ku(t) = f(t) (1.1)

where M is the mass matrix, C is the viscous damping matrix, K is the stiffness

matrices, f(t) is the vector of applied forces, u(t) is the displacement vector, u̇(t) is

the velocity vector, and ü(t) is the acceleration vector. A solution of the initial value

problem described by Eq. (1.1) satisfies the following initial conditions

u(0) = u0 (1.2a)

u̇(0) = v0 (1.2b)

where u0 and v0 are the initial displacement and velocity vectors, respectively.

There are two general strategies which can be used to analyze Eq. (1.1). The exact

solution can be obtained by using the modal decomposition method. Otherwise, the

numerical solution of Eqs. (1.1)-(1.2) can be found by using proper step-by-step

direct time integration algorithms.
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The modal decomposition method is very useful for simple linear systems, but it

is not suitable for complicated nonlinear systems. In addition to these limitations,

special knowledge of the solution method is required in the modal decomposition

method.

On the other hand, direct time integration algorithms are more broadly used

than the modal decomposition method, because they can be systematically applied

to general second-order initial value problems without special knowledge of solution

method. In direct integration algorithms, numerical solutions of Eqs. (1.1) and (1.2)

can be easily found by just inputting the given data (i.e., M, C, K, f(t), u0, and v0) of

the problems. In addition, majority of the existing direct time integration algorithms

can be applied to nonlinear analyses without any modifications. In fact, many direct

time integration algorithms were developed mainly for nonlinear analyses. Due to

these advantages, the development of improved time integration algorithms has long

been an interest of structural dynamics. Some applications of direct time integration

algorithms to various types of challenging problems can be found in Refs [9, 10, 11,

12, 13].

Time integration algorithms can be categorized into explicit and implicit algo-

rithms according to Ref. [1, 14, 15, 16, 17, 18, 19]. Explicit algorithms do not require

factorization of the effective stiffness matrix to advance a time step, while implicit

algorithms do. Naturally, less computational effort is required in explicit algorithms

compared to implicit algorithms. However, explicit algorithms are only condition-

ally stable, thus, time steps should be small enough to satisfy the stability condition.

In explicit algorithms, the critical sizes of time steps are inversely proportional to

the highest frequency of the discrete system. If a chosen time step is larger than the

critical time step of a chosen explicit algorithm, then the algorithm become unstable.

In many cases, it is very difficult to accurately discretize spatial domains of given

2
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problems, and poor discretization of spatial domains often introduce artifacts called

the spurious high frequency modes [20, 21, 22]. A popular remedy for this artifact

is to eliminate the spurious high frequency responds from numerical solutions by

utilizing the numerical damping of time integration algorithms. However, explicit al-

gorithms may amplify the spurious high frequency responds, worsening the stability,

rather than providing algorithmic damping in the high frequency range. As a matter

of fact, time steps should be chosen as inversely proportional to the spurious high

frequency in order to secure stability in explicit algorithms. This also means that

time steps may become unnecessarily small depending on the value of high frequency,

and the computational cost may rise up to unaffordable levels in some extreme cases.

However, implicit algorithms are often preferred to explicit algorithms because

they can be designed as unconditionally stable ones. As a result, choices of time

steps are not restricted by stability conditions in most of implicit algorithms. In

addition to unconditional stabilities, implicit algorithms can be designed to possess

numerical damping in the high frequency ranges. With proper sizes of time steps,

unconditionally stable implicit algorithms designed to possess numerical damping

in the high frequency regime can effectively filter out the spurious high frequency

responds without additional filtering algorithms.

1.1 Second-Order Time Integration Algorithms

Some of second-order algorithms are still being broadly used for dynamic analyses

of structural problems due to reasonable accuracy, affordable computational cost, and

simple computer implementation. Here, we briefly review some implicit algorithms

which have been proven to be effective ones through years of uses in linear and

nonlinear structural dynamics.

After the introductions of the Houbolt method [9] and the Newmark method

3
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[23], several improved time integration algorithms were developed. The Wilson θ-

method [24, 25], the Park method [26], the collocation method [27], the modified

Houbolt method [28], the ρ-method [29] were developed to achieve some of prefer-

able attributes, such as unconditional stability, improved accuracy, and numerical

dissipation in the high frequency range. Later, the generalized single-step method

[30, 31] and the θ1 method [32] were designed to included most of the previous algo-

rithms as special cases of them, and higher-order accurate cases were also obtained

by increasing the degree of the approximations. According to Ref. [33], however,

higher-order algorithms obtained from the generalized single-step and θ1 methods

are only conditionally stable.

The Newmark method can be considered as the most significant second-order al-

gorithm, because the truncated finite difference approximations used in the Newmark

method have been used as bases of several improved second-order algorithms. For

example, the HHT-α method [20], the WBZ-α method [34], and the generalized-α

method [7] used exactly the same finite difference approximations used in the New-

mark method. In the original Newmark method, the dynamic equilibrium equation

was obtained by evaluating all force members (i.e., the inertia, viscous damping,

and internal stress related forces) of the equation of structural dynamics at the end

of the time interval. On the contrary to the Newmrk method, the improved algo-

rithms listed above used modified dynamic equilibrium equations with additional

parameters, which are called the alpha parameters. In the modified dynamic equi-

librium equations, at least one of force members was allowed to vary linearly within

the time interval, and the variations of the force members were adjusted through

the alpha parameters. By optimizing the alpha parameters improved performances

were obtained. Among the improved algorithms listed above, only the generalized-α

method can provide the second-order accuracy for numerically dissipative cases, the

4
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unconditional stability, and the controllable algorithmic dissipation.

Figure 1.1: Second-order algorithms

Recently, the Baig and Bathe method [35] was introduced. The Baig and Bathe

method possess very strong algorithmic damping in the high frequency regimes. This

special attribute is also observed in the Hobolt and Park methods, and sometimes

called the asymptotic annihilation property [36, 7]. If an algorithm has the asymp-

totic annihilation property, it can filter out any effects coming from the high fre-

quency regime within one time step. In the Baig and Bathe method, the asymptotic

annihilating property was enhanced by combining two well-known method.

For a better understanding of second-order algorithms, the Newmark method,

the generalised-α method, and the Baig and Bathe method are reviewed briefly.
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1.1.1 Newmark Method

The Newmark method [23] is one of the most broadly used single step second-

order time integration algorithms. After the introduction of the Newmark method

in 1959, its truncated finite difference approximations were used in the improved

algorithms [7, 28, 34, 37, 38]. In the Newmark method, the dynamic equilibrium

equation is satisfied at the end of the time interval (i.e., at t = ts+1) as follows:

Müs+1 + Cu̇s+1 + Kus+1 = f(ts+1) (1.3)

Here, us+1 is the displacement vector at t = ts+1. In the Newmark method, the

displacement and velocity vectors at t = ts + ∆t are obtained from the Taylor’s

series expressions of

us+1 = us + ∆t u̇s +
1

2
∆t2 üs +

1

6
∆t3

...
us + · · · (1.4a)

u̇s+1 = u̇s + ∆t üs +
1

2
∆t2

...
us + · · · (1.4b)

Eqs. (1.4a) and (1.4b) are truncated as

us+1 = us + ∆t u̇s +
1

2
∆t2 üs + β∆t3

...
u (1.5a)

u̇s+1 = u̇s + ∆t üs + γ∆t2
...
u (1.5b)

where β and γ are the two truncation parameters, and us+1 is the displacement

vector at t = ts, ∆t = ts+1 − ts being the size of the time step.

6
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In the Newmark method,
...
u is assumed to be

...
u =

üs+1 − üs
∆t

(1.6)

By using Eqs. (1.5a) and (1.5b), two of üs+1, u̇s+1, and us+1 can be eliminated from

Eq. (1.3), and the remaining one unknown vector can be solved. After finding one

of three unknown vectors, remaining two unknown vectors are updated by using

Eqs. (1.5a) and (1.5b).

The Newmark method can also include some well-known finite difference methods

as special cases. In the Newmark method, the choice of β = 1
4

and γ = 1
2

gives the

constant average acceleration method (also known as the trapezoidal rule), which is

second-order accurate and unconditionally stable, and the choice of β = 1
6

and γ = 1
2

gives the linear acceleration method, which is third-order accurate and conditionally

stable.

1.1.2 Genralized-α Method

The generalized-α method [17, 7, 39] is one of the latest alpha type modified

methods. The generalized-α method was developed based on the modified dynamic

equilibrium equation and the Newmark approximations given in Eqs. (1.5a) and

(1.5b). In this method, the dynamic equilibrium equation is satisfied at some inter-

mediate time points within the time interval ∆t. The modified dynamic equilibrium

equation of the generalized-α method is given by

Müs+1−αm + Cu̇s+1−αf + Kus+1−αf = f(ts+1−αf ) (1.7)

7
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where üs+1−αm , u̇s+1−αf , us+1−αf and ts+1−αf are defined as

us+1−αf = (1− αf ) us+1 + αf us (1.8a)

u̇s+1−αf = (1− αf ) u̇s+1 + αf u̇s (1.8b)

üs+1−αm = (1− αm) üs+1 + αm üs (1.8c)

ts+1−αf = (1− αf ) ts+1 + αf ts (1.8d)

After substituting Eqs. (1.8a)-(1.8d) into Eq. (1.7), Eq. (1.7) can be restated in terms

of üs+1, u̇s+1. Then, two of üs+1, u̇s+1, and us+1 can be eliminated from Eq. (1.7) by

using the Newmark approximations given in Eqs. (1.5a) and (1.5b). The remaining

unknown vector can be found by solving Eq. (1.7), and the others can be updated

by using Eqs. (1.5a) and (1.5b). This procedure is very similar to the procedure

explained in the Newmark method.

In the generalized-α method, γ, β, αf and αm have been optimized to achieve

second-order accuracy, unconditional stability, and minimized low-frequency dissipa-

tion. In this method, all four parameters have been optimized as

γ =
1

2
− αm + αf , β =

1

4
(1− αm + αf )

2 , αm =
2µ− 1

µ+ 1
, αf =

µ

µ+ 1
(1.9)

where µ is a user specified algorithmic dissipation control parameter which can range

from 0 to 1. If µ = 1, this algorithm becomes the non-dissipative algorithm (the

trapezoidal rule), whereas µ = 0 makes the algorithm as the asymptotic annihilation

case, which gives the maximum algorithmic dissipation within its family. The con-

trollable algorithmic dissipation and the second-order accuracy for dissipative cases

have been considered as the main advantages of the generalized-α method.
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1.1.3 Baig and Bathe Method

Two existing well-known methods have been combined in the Baig and Bathe

method [35, 40, 41, 8]. In the Baig and Bathe method, the complete time interval

∆t is subdivided into two sub-steps. Then the constant average acceleration method

(the trapezoidal rule) and the 3-point Euler backward method are used for the first

and second sub-steps, respectively. For the first sub-step (ts ≤ t ≤ ts+1/2), the

dynamic equilibrium equation at t = ts + 1
2
∆t is given by

Müs+ 1
2

+ Cu̇s+ 1
2

+ Kus+ 1
2

= f(ts+ 1
2
) (1.10)

where us+ 1
2

is the displacement vector at t = ts + 1
2
∆t. Then u̇s+ 1

2
and us+ 1

2
are

approximated as

u̇s+ 1
2

= u̇s +
∆t

4

(
üs + üs+ 1

2

)
(1.11a)

us+ 1
2

= us +
∆t

4

(
u̇s + u̇s+ 1

2

)
(1.11b)

For the second sub-step (ts ≤ t ≤ ts+1), the dynamic equilibrium equation at

t = ts + ∆t is given by

Müs+1 + Cu̇s+1 + Kus+1 = f(ts+1) (1.12)

and, u̇s+1 and üs+ 1
2

are approximated as

u̇s+1 =
1

∆t

(
us − 4us+ 1

2
+ 3us+1

)
(1.13a)

üs+1 =
1

∆t

(
u̇s − 4u̇s+ 1

2
+ 3u̇s+1

)
(1.13b)

9
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In the Baig and Bathe method, us+ 1
2
, u̇s+ 1

2
, and üs+ 1

2
are found by using Eqs. (1.10)-

(1.11b). With us+ 1
2
, u̇s+ 1

2
, and üs+ 1

2
obtained in the first sub-step, us+1, u̇s+1,

and üs+1 are found by solving Eqs. (1.12)-(1.13b). This method does not have any

adjustable parameters, and performs only as the asymptotic annihilation case [36]

similar to the Houbolt and the Park methods.

1.1.4 Some Limitations of Second-Order Algorithms

As mentioned, only the generalized-α method can provide (a) second-order ac-

curacy, (b) unconditional stability, and (c) controllable algorithmic dissipation. In

additions to these attributes, the generalized-α method is the only method which

can retain the second-order accuracy for numerically dissipative cases. However,

one shortcoming of the generalized-α method is that this method may introduce

excessive numerical damping into the important low frequency mode as well as the

spurious high frequency mode, if highly dissipative case is used. In other word, if the

generalized-α method is used to eliminate the spurious high frequency mode from

numerical solutions, the important low frequency mode in numerical solutions can

also be filtered out.

If filtering of the high frequency modes in numerical solutions is the main pur-

pose of an transient analysis, the Baig and Bathe method may be able to provide

more accurate solutions than the generalized-α method, because the Baig and Bathe

method can eliminate the spurious high frequency effect by introducing the maxi-

mum numerical damping into the high frequency range with the minimum damping

into the important low frequency range. However, the Baig and Bathe method can-

not adjust the level of the numerical damping, and it can perform as the asymptotic

annihilation case only. The high frequency filtering capability is very useful in many

cases of practical analyses, but there may be some situations where conservation of
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the total energy of dynamic systems is more important. To handle different demands

of various types of analyses more flexibly within a single computer code, a chosen

time integration algorithm is required to possess the algorithmic dissipation capabil-

ity. For this reason, the dissipation control capability has been considered to be a

preferable attribute of time integration algorithms in many literatures [42, 43, 44].

In this viewpoint, the Baig and Bathe method is not a practical algorithm. However,

the absence of undetermined parameters in the Baig and Bathe method has been

considered an advantage of the method by the authors of Ref. [8].

In addition to the excessive numerical damping in low frequency mode in highly

dissipative cases of the generalized-α method, applying the method to nonlinear

analyses may require some additional modifications of nonlinearities included in the

equation of structural dynamics, because this method uses the modified dynamic

equilibrium equation as discussed. In the generalized-α method, a proper lineariza-

tion of the internal force vector should be conducted to use the Newton-Raphson

iterative method for the nonlinear equation solving as presented in Refs. [45, 46, 47].

On the other had, the Newmrk method and the Baig and Bathe method do not

require any linearizations of the internal force vector to use the Newton-Raphson

iterative method.

The shortcomings of two well-known algorithms can be overcome through a new

algorithm. An improved algorithm can be developed by combining several well-

established numerical techniques. In fact, the development of an improved second-

order algorithm is still very important, because reasonably good solutions and afford-

able computational effort can be achieved with second-order algorithms in general

analyses. However, there exist some analyses of extreme situations also, and second-

order algorithms may not be able to handle them properly. To obtained acceptable

predictions in some extreme transient analyses, second-order algorithms may use
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very small sizes of time steps, but this may be accompany by a hugely increased

computational cost.

Here, some fundamental limitations of second-order algorithms are discussed.

First, second-order algorithms are not suitable for long-term analyses, because a

second-order algorithm introduces a considerably large amount of error into the nu-

merical solution in each time step. Since a step-by-step time integration algorithm

uses the solution of the previous time step as the known data of the current equa-

tion solving, the solution of the current will be affected by the error of the previous

solution as well as the algorithm. In a long-term analysis, this type of accumulation

of errors can contaminate numerical solutions seriously even with a very small size

of time step. In general, the quality of numerical solutions can be improved up to a

certain level by reducing sizes of time steps. But in a long-term analysis, very small

time steps may increase the computational cost up to an unaffordable level, if a given

dynamic system is very large one.

Second, the range of admissible sizes of time steps is very narrow in dissipative

second-order algorithms, if some situation requires the filtering of high-frequency

modes. In many practical cases, the spatial discretization of given PDEs cannot

be accurate enough to represent all exact frequency modes, poor representations of

the spatial domain are often accompanied by the artifacts called the spurious high

frequency modes. These spurious high frequency modes can affect the quality and

stability (in some nonlinear cases) of numerical solutions. A simple and effective

way of eliminating the spurious high frequency modes from numerical solutions is to

utilize algorithmic dissipations of time integration algorithms. Some of the existing

second-order algorithms, such as the Houbolt method, the Park method, and the Baig

and Bathe method, can be used mainly for this purpose in practical analyses. They

were designed to introduce the maximum numerical damping in the high frequency
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limit, while minimizing the numerical damping in the important low frequency range.

As a rule, the size of time step should be chosen properly from the range of 10 TH ≤

∆t ≤ 1
10
TL in second-order algorithms, where TH is the periods of the spurious high

frequency mode, and TL is the period of the important low frequency mode. If this

condition is violated, dissipative second-order algorithms may give poor important

low frequency solution or filter out spurious high frequency mode in a slow rate.

Some of related discussions have been presented in Ref. [48].

Third, second-order algorithms cannot provide reliable nonlinear solutions for

highly nonlinear problems as discussed in Ref. [11]. In highly nonlinear problems,

numerical solutions obtained from second-order algorithms may contain noticeable

amounts of period and amplitude errors, and these contaminated solutions are sup-

posed to be used as the known properties in the next step to advance another step.

For this reason, the next step solutions can be distorted more severely, if the current

step solutions are inaccurate. Unlike the linear and moderately nonlinear problems, it

is very difficult to determine a proper size of time step in highly nonlinear problems.

Since time integration algorithms should be used repeatedly to obtain predictions

at desired time point, analyses may become completely misleading one in highly

nonlinear problems. Of course, majority of moderately nonlinear problems can be

properly analyzed by using second order algorithms, and refining time steps can in-

crease qualities of solutions in second-order algorithms. However, we do not have a

proper measure which can be used as an indication for the time step refinement in

nonlinear problems. In some highly nonlinear cases, numerical solutions of a given

nonlinear problems may be a completely misleading ones, but user do not have an

ability to check the validness of numerical solutions. In other words, using second

order algorithms for the analyses of highly nonlinear problems is accompanied by the

potential danger of getting a totally wrong prediction.
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1.2 Higher-order Time Integration Algorithms

In general, the algorithm is called higher-order algorithm if the order of accuracy

[49] of the time integration algorithm is higher than or equal to third. Over the past

four decades, many higher-order algorithms have been developed based on various

numerical methods to overcome the limitations of second-order algorithms. These nu-

merical methods include the Newmark approximation [23] based sub-stepping meth-

ods [50, 51, 37, 52, 38, 53], the variational method [54, 55, 56, 57, 58], the weighted

residual method [36, 59, 60, 61, 43], the collocation method [62, 63, 64, 65], and

the differential quadrature method [66, 67, 44, 68]. Among the numerical method

mentioned above, some can be used to develop higher-order algorithms of certain

order of accuracies, while the others can be used to develop higher-order accurate

algorithms of general order of accuracies.

Among several numerical methods which have been used to develop higher-

order time integration algorithm families, only Fung’s differential quadrature method

[69, 44, 70, 68] and Fung’s collocation method [71] can be used to develop time inte-

gration algorithms with general order of accuracy, controllable algorithmic dissipa-

tion, unconditional stability, and full extensibility to nonlinear cases. Both methods

can provide equivalently accurate solutions for second-order initial value problems,

and computer implementations of the final algorithms are very similar in both meth-

ods. However, the differential quadrature method can be considered more significant

one, because it has simpler computational structure and better extensibility to vari-

ous types of initial value problems.

The weighted residual method based algorithms proposed by Fung [72, 60] also

have the controllable algorithmic dissipation, unconditional stability. But applying

them to nonlinear analyses requires additional modification of algorithms or rear-
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Figure 1.2: Higher-order algorithms

rangement of the governing equations into suitable forms for these algorithms. This

is because the structural dynamics equation has been directly manipulated into the

weighted integral forms in the minimization procedure of the residual. Naturally, the

result equation obtained from the linear equation of structural dynamics cannot be

directly used in nonlinear cases in the weighted residual method based algorithms.

In fact, these weighted residual method based algorithms were not fully extended to

nonlinear cases.

However, the differential quadrature method can be applied to general nonlinear

problems, because discrete relations of a variable and its time derivatives are directly

derived from known test functions. Once discrete time derivatives of the test function

are stated in terms of the function values at the sampling points, they can be used
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to discretize the equation of structural dynamics. Due to this simple characteristic

of the differential quadrature method, both linear and nonlinear cases can be tackled

without any modification of algorithms.

Here, the weighted residual and differential quadrature methods based higher-

order time integration algorithms are briefly reviewed, because our new approaches

are closely related with these two methods in conceptually and technically. More

details of existing higher-order time integration algorithms are well summarized in

Refs. [33], [73] and [74].

1.2.1 Weighted Residual Method Based Algorithms

Hulbert[36] rewrote the equation of structural dynamics as a set of two first-order

equations, and the time discontinuous Galerkin method was applied to the rewritten

equations. Two first-order equations used in time discontinuous Galerkin method

are

Mv̇(t) + Cv(t) + Ku(t) = f(t) (1.14a)

v(t) = u̇(t) (1.14b)

u(t) and v(t) satisfy the initial conditions

u(0) = u0 (1.15a)

v(0) = v0 (1.15b)

Eqs. (1.14a) and (1.14b) can be called the mixed formulations [60, 75, 76, 77], be-

cause different types of variables are included in the formulations and approximated
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independently. By applying the time discontinuous Galerkin Method to Eqs. (1.14a)

and (1.14a), the unified set of single-step time integration algorithms was obtained.

The algorithms developed by Hulbert did not possess dissipation control capability

and performed as the asymptotic annihilation case only. Later Idesman also used

Eqs. (1.14a) and (1.14a), but he employed the time continuous Galerkin method

[43, 78]. Unlike Hulbert’s algorithms, Idesman’s algorithms were designed to possess

dissipation control capability. However, the control of algorithmic dissipation was

not intuitive in Idesman’s algorithms. In both cases, nth-degree polynomials were

used to approximate u(t) and v(t), and Eqs. (1.14a) and (1.14a) were used to define

residual vectors in time. In Idesman’s work [43], the displacement and the velocity

vectors were approximated as

ũ(t) = u0 + u1 t+ u2 t
2 + · · ·+ un t

n (1.16a)

ṽ(t) = v0 + v1 t+ v2 t
2 + · · ·+ vn t

n (1.16b)

where u0 and v0 are the known initial displacement and velocity vectors, and u1, ...,u1

and v1, ...,v1 are the unknown coefficient vectors to be determined. By using Eqs. (1.14a)

and (1.14b), two sets of weighted residual statements were defined as

∫ ts+1

ts

(v̄(t) + a ˙̄v(t))T
(
M ˙̃v(t) + Cṽ(t) + Kũ(t)− f(t)

)
dt = 0 (1.17a)

∫ ts+1

ts

(ū(t) + a ˙̄u(t))T
(
ṽ(t)− ˙̃u(t)

)
dt = 0 (1.17b)

where

ū(t) = ū1 t+ ū2 t
2 + · · ·+ ūn t

n (1.18a)

17



www.manaraa.com

v̄(t) = v̄1 t+ v̄2 t
2 + · · ·+ v̄n t

n (1.18b)

Here a is an algorithmic parameter used for the control of algorithmic dissipation. In

Idesman’s original paper [43], a was restated in terms of the dimensionless parameter

α as a = ∆t/α. Since Eq. (1.17) should be integrated over the time interval (ts ≤

t ≤ ts+1), it is difficult to apply the algorithms to nonlinear analyses.

Fung[60] also used the weighted residual method, but he directly manipulated the

equation of structural dynamics given in Eq. (1.1). The weighted residual statement

considered by Fung can be written as

∫ ts+1

ts

wi(t)
(
M¨̃u(t) + C ˙̃u(t) + Kũ(t)− f(t)

)
dt = 0 for i = 1, 2, ..., n (1.19)

where ũ(t) is the approximation of u(t), and wi(t) is the ith weight function. In

Fung’s weighted residual approach, ũ(t) was specially constructed to satisfy the initial

conditions given in Eqs. (1.2a) and (1.2b). In Fung’s work, the displacement vector

was approximated as

ũ(t) = u0 + v0 t+ u2 t
2 + u3 t

3 + · · ·+ un+1 t
n+1 (1.20)

where u0 and v0 are the initial displacement and velocity vectors, and u2,u3, ...,un+1

are the unknown coefficient vectors. The weighted residual approach used by Fung

was advantageous because the weight parameters [59, 79] were used to rewrite the

integral forms of the weighted residual statement given in Eq. (1.19) as the algebraic

form. According to Ref. [16], the weight parameters can be defined by

θk =

∫ ∆t

0
w(τ) τ k dτ

∆t k
∫ ∆t

0
w(τ) dτ

for k = 0, 1, 2, ..., n+ 1 (1.21)
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where τ = t − ts is the local time parameter. After restating the integral form of

weighted residual statement given in Eq. (1.19) as algebraic forms by using the weight

parameters, the weight parameters are optimized to achieve improved accuracy and

stability. Since the equation of structural dynamics given in Eq. (1.1) was directly

used to state the weighted residual statement, the result algorithms obtained from

Fung’s method cannot be applied to nonlinear analyses either.

1.2.2 Differential Quadrature Method

Unlike the existing weighted residual method based algorithms, the differential

quadrature method [80] based algorithms can be applied to nonlinear and linear

problems without any limitation. The accuracy of the differential quadrature method

is mainly determined by the choice of the sampling points (also called the quadrature

points) within the time interval. For example, in the differential quadrature method,

the first order time derivative of the displacement vector at the sampling points can

be stated as 
u̇1

...

u̇n

 =


a11 I · · · a1n I

...
...

an1 I · · · ann I




u1

...

un

+


a10 I

...

an0 I

u0 (1.22)

where ui is the displacement vector of size m associated with the ith sampling point

ti, m being the size of the semi-discrete system in Eq. (1.1), and I is an m × m

identity matrix. Here, aij are the weighting coefficients which can be constructed by

using known test function Ψ(t) and properly chosen sampling points within the time

interval. In the differential quadrature method, n + 1 sampling points (i.e., ti, for

i = 0, 1, 2, ..., n) are located in the time interval, and the first sampling point (t0) is

always chosen to be the beginning of the time interval (ts), whereas the last sampling
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point (tn) may not match the end of the time interval. By using Ψ(t), the function

values and their first-order time derivative at sampling points can be related as

d

dt
Ψ(t)

∣∣∣∣
t=ti

=
n∑
j=0

aijΨ(tj) for i = 0, 1, 2, ..., n (1.23)

As the simplest case, Ψ(t) can be chosen as 1, t, t2, ..., or tn. Then, aij can be con-

structed systematically from Eq. (1.23) since d
dt

Ψ(t)
∣∣
t=ti

and Ψ(tj) are all known

values if proper sampling points are provided. If Ψ(t) ∈ {1, t, t2, ..., tn}, aij can be

constructed as



a00 a01 · · · a0n

a10 a11 · · · a1n

...
...

...

an0 an1 · · · ann


=



1 t0 · · · tn0

1 t1 · · · tn1
...

...
...

1 tn · · · tnn





0 1

0
. . .

. . . n

0





1 t0 · · · tn0

1 t1 · · · tn1
...

...
...

1 tn · · · tnn



−1

(1.24)

In the traditional differential quadrature methods, both equally spaced sampling

points and some specially spaced points (such as the Chebyshev-Gauss-Lobatto and

the Legendre-Chebyshev points) were used. However, in the modified differential

quadrature method considered by Fung [69, 44], the sampling points are carefully

chosen to achieve improved accuracy, unconditional stability and controllable algo-

rithmic dissipation. Similarly, the discrete acceleration-velocity relation is stated by

using aij as follows:


ü1

...

ün

 =


a11 I · · · a1n I

...
...

an1 I · · · ann I




u̇1

...

u̇n

+


a10 I

...

an0 I

 u̇0 (1.25)
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To state accelerations vectors in terms of displacement vectors, u̇i in Eq. (1.25) are

eliminated by using the relation given in Eq. (1.22). In Fung’s modified differential

quadrature method, üi can be stated as


ü1

...

ün

 =


ā11 I · · · ā1n I

...
...

ān1 I · · · ānn I




u1

...

un

+


ā10 I

...

ān0 I

u0 +


a10 I

...

an0 I

v0 (1.26)

where āij and āi0 are computed as,


ā11 I · · · ā1n I

...
...

ān1 I · · · ānn I

 =


a11 I · · · a1n I

...
...

an1 I · · · ann I



a11 I · · · a1n I

...
...

an1 I · · · ann I

 (1.27a)


ā10 I

...

ān0 I

 =


a11 I · · · a1n I

...
...

an1 I · · · ann I



a10 I

...

an0 I

 (1.27b)

In the differential quadrature method, n dynamic equilibrium equations are re-

quired to find n unknown displacement vectors associated with the corresponding

n sampling points. To apply the relations given in Eqs. (1.22) and (1.26), the n

dynamic equilibrium equations can be written in the matrix form as


M

. . .

M




ü1

...

ün

+


C

. . .

C




u̇1

...

u̇n

+


K

. . .

K




u1

...

un

 =


f1

...

fn

 (1.28)
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Substitution of Eqs. (1.22) and (1.26) into Eq. (1.28) can be simplified as



ā11M · · · ā1nM

...
...

...

ān1M · · · ānnM

+


a11C · · · a1nC

...
...

...

an1C · · · annC

+


K

. . .

K





u1

...

un


=


f1

...

fn

−

ā10 M + ā10 C

...

ān0 M + ān0 C

u0 −


ā10 M

...

ān0 M

v0

(1.29)

Then ui can be found by solving Eq. (1.29).

As shown in Eqs. (1.22) - (1.29), the application of the differential quadrature

method to the linear structural dynamics problems is very simple and intuitive, once

the weighting coefficients are properly constructed. However, improved accuracy,

unconditional stability and algorithmic dissipation control are not provided in the

conventional differential quadrature method. Only the modified differential quadra-

ture method considered by Fung can be used to develop higher-order algorithms with

improved accuracy, unconditional stability and algorithmic dissipation control. In

Fung’s method, the sampling points (the quadrature points) have been optimized

by using the exact solution of the homogeneous single degree of freedom problem to

achieve higher-order accuracy, the dissipation control capability, and the uncondi-

tional stability.

1.2.3 Some Limitations of Existing Higher-Order Algorithms

Among many of the existing weighted residual method based higher-order algo-

rithms, the algorithms of Fung [60] and Idesman [43] can control numerical dissipa-

tions of the algorithms. However the algorithms of Idesman can provide only limited

range of numerical dissipations in the high frequency limit. In both weighted residual
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methods, time dependent variables have been approximated as polynomial expres-

sions satisfying given initial conditions as presented in Eq. (1.16) and (1.20). In

these methods, the approximation coefficient vectors do not have physical meanings.

As a result, numerical solutions should be computed at the end of computation by

using the approximations after determining the approximation coefficient vectors. In

addition, algorithms proposed by Idesman can only provide less accurate solutions

compared to Fung’s algorithms. In our own review of these two algorithms, we found

that only nth-order accuracy could be obtained with the algorithms proposed by Ides-

man. On the other hand, the algorithms of Fung could provide (2n − 1) th-order

accuracy.

The modified differential quadrature method considered by Fung can provide

higher-order algorithms with improved accuracy, unconditional stability, and con-

trollable numerical dissipation. However, the sampling points of Fung’s differen-

tial quadrature method are quite different from those of the traditional differential

quadrature method. In Fung’s method, the first sampling point is always chosen to

be ts, which is the same in the traditional quadrature method. However the last

sampling point does not always match ts+1. For example, in the non-dissipative case

of the 4th-order algorithm (n = 2) obtained by using Fung’s differential quadrature

method, three quadrature points should be chosen as t0 = 0.0, t1 = 0.2113248653,

and t2 = 0.7886751347. In Fung’s method, the first sampling point always matches

the beginning of the time interval. In this particular case, u0 and v0 are known

values at t = t0∆t, and displacement solutions (u1 and u2) at t = t1∆t and t2∆t

can be obtained by solving Eq. (1.29). Since t2 is not 1.0, u2 of Eq. (1.29) is not

us+1. In the Fung’s method, us+1 should be reconstructed by interpolating u0, u1

and u2. This procedure may not increase the computational cost noticeably, but the

implementation of this procedure is additional work, which is not required in other
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methods.

Another additional procedure required in the Fung’s method is the determination

of the n sampling points for each specification of dissipation level. The n sampling

points are the roots of nth-degree polynomial equation whose coefficients are func-

tions of a free parameter which is selected by user for the control of algorithmic

dissipations. The weighting parameters can be constructed after determining n sam-

pling points. If n = 2, the velocity-displacement relations at two sampling points

can be written down analytically in terms of the dissipation control parameter. If

n = 3, 4, it is still possible to directly state the velocity-displacement relations at

sampling points in terms of the dissipation control parameter, while the expression

may become longer and more complicated than the case of n = 2. However, finding

roots of the polynomial equation of 5th or higher degree becomes difficult, because

it has been proven that roots of 5th or higher degree polynomial equation cannot be

found analytically according to the Abel−Ruffini theorem. Thus, additional numer-

ical algorithms should be used to find n roots of nth degree polynomial equation for

every specification of the dissipation control parameter in Fung’s method.

1.3 Motivation and Objectives

The first goal of this study is to develop a new family of second-order time

integration algorithms which can overcome the limitations of the existing second-

order algorithms. Preferable attributes of second-order time integration algorithms

include

(1) Unconditional stability for linear problems

(2) Controllable algorithmic dissipation

(3) Second-order accuracy for dissipative cases

(4) Easy extension to nonlinear problems
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attribute Newmark Generalized-α Baig and Bathe

(1) yes yes yes
(2) limited yes no
(3) no yes yes
(4) yes limited [46] yes

Table 1.1: Evaluation of existing second-order algorithms by preferable attributes.
(1): Unconditional stability for linear problems, (2): Controllable algorithmic dis-
sipation, (3): Second-order accuracy for dissipative cases, (4): Easy extension to
nonlinear problems

Among many of the existing second-order algorithms, only the generalized-α

method can provide all attributes stated in (1)-(4). However, (4) is not fully pro-

vided in the generalized-α method as discussed in Ref. [81]. Another shortcoming

of the generalized-α method is that it may introduce excessive algorithmic damping

into the important low frequency range, if highly dissipative case is used. If fast

high frequency filtering is required in the analysis, the Baig and Bathe method can

provide more accurate low frequency solutions than the generalized-α method does.

However, the Baig and Bathe method can perform as the asymptotic annihilation

case only. As a result, it is not suitable for the long-term energy conserving type of

problems.

As the first part of our study, we propose a new second-order algorithm developed

based on (a) the Lagrange interpolation functions in time, (b) two residuals defined

from unconventionally rewritten first-order equations, and (c) the collocation method

to overcome the shortcomings of the two second-order algorithms in a moderate way.

As discussed previously, however, the fundamental limitations of second-order

algorithms cannot be overcome without considering higher-order algorithms. Thus,

the ultimate goal of this study is to provide improved higher-order time integration
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algorithms that can be used for the analysis of structural dynamics in ready-to-

use forms. Preferable attributes of higher-order time integration algorithms can be

summarized as

(1) Unconditional stability for linear problems

(2) Controllable algorithmic dissipation

(3) Exclusion of any undetermined algorithmic parameter

(4) Exclusion of any reconstruction of solutions

(5) Conciseness of final result equation

(6) Easy application to nonlinear problems

(7) Improved (2n − 1) th- or (2n) th-order accuracy (n being the number of

unknown vectors)

Many higher-order time integration algorithms have been proposed for the effec-

tive analysis of structural dynamic problems, but none of them successfully achieved

all of the preferable attributes listed above. To summarize the characteristics of

the existing higher-order algorithms, their are evaluated according to the preferable

attributes and the results are presented in Table 1.2.

In this study we wish to develop new higher-order algorithms which can eliminate

the limitations of the existing higher-order algorithms. To design new time integra-

tion algorithms, two modified time finite elements approaches have been considered.

As the second part of our study, we propose a time finite element procedure

based on (a) the Hermite interpolation functions in time, (b) the residual defined

from original second-order structural dynamics equation, (c) the modified weighted

residual method and (d) the weight parameters, to overcome some limitations of the

existing weighted residual method based algorithms.

As the third part of our study, we propose another time finite element proce-

dure based on (a) the Lagrange interpolation functions in time, (b) two residu-
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attribute DQM[44] WRM[60] WRM-TCG[43] WRM-TDG[36]

(1) yes yes limited yes
(2) yes yes limited no
(3) limited yes yes yes
(4) limited limited limited yes
(5) limited limited limited yes
(6) yes no no no
(7) yes yes limited yes

Table 1.2: Evaluation of existing higher-order algorithms by preferable attributes.
(1): Unconditional stability for linear problems, (2): Controllable algorithmic dissi-
pation, (3): Exclusion of any undetermined algorithmic parameter, (4): Exclusion
of any reconstruction of solutions, (5): Conciseness of final result equation , (6):
Easy application to nonlinear problems, (7): Improved (2n− 1) th- or (2n) th-order
accuracy (n being the number of unknown vectors)

als defined from unconventionally rewritten first-order equations, (c) the modified

weighted residual method and (d) the weight parameters to overcome all limitations

of the differential quadrature method proposed by Fung.

1.4 Overview

In Chapter 2, a new family of implicit second-order time integration algorithm

is developed, analysed, and tested. The algorithm is fully extended to nonlinear

problems. The algorithm developed in this Chapter can provide better efficiency

compared with existing second-order algorithms.

In Chapter 3, a new family of implicit higher-order time integration algorithms

is developed, analysed, and tested. The algorithms developed in this Chapter can

provide better efficiency compared with existing weighted residual method based

higher-order algorithms, elimination their limitations. The algorithms presented in

this chapter have very unique computational structure that improves the efficiency
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of equation solving when properly implemented into computer code.

In Chapter 4, another new family of implicit higher-order time integration al-

gorithms is developed, analysed, and tested. The algorithms are fully extended to

nonlinear cases, and specific linear and nonlinear equation solving procedure is pro-

vided. The algorithms presented in this chapter can be applied to any order of initial

value problems as the differential quadrature method.

In Chapter 5, conclusions are presented along with future works.
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2. TIME FINITE ELEMENT METHOD I

2.1 Introduction

For many decades, an important part of linear and nonlinear dynamic analyses

of structural problems has been the development of effective step-by-step implicit

time integration algorithms[9, 23, 24, 26] that are robust and efficient (i.e., stable

and accurate). Several successful algorithms[20, 27, 34, 7] have been developed based

on modified structural dynamics equations and the Newmark scheme[23]. In these

algorithms, the algorithmic dissipation has been effectively controlled by utilizing

the numerical damping caused by the modification of structural dynamics equations,

and the parameters of the Newmark scheme also have been selected correspondingly

to maintain accuracy and stability. In the modified structural dynamics equation,

different evaluation points (in time) of forces (i.e., inertia, damping, internal resis-

tance, and externally applied forces) serve as the main mechanism of the algorithmic

numerical damping, which can improve the quality of numerical solutions with the

appropriate use of the parameters of the Newmark scheme.

The generalized-α method[7] can be viewed as one belonging to this category.

Among four parameters of the generalized-α method, two parameters are the original

parameters of the Newmark scheme[23] and the others, called alpha parameters, are

introduced to determine the points in the time domain where the forces of the struc-

tural dynamics equation are evaluated. The most distinct feature of the generalized-α

method from several previously developed alpha type methods[20, 49, 34] which use

*Reprinted with permission from An Improved Time Integration Algorithm: A Collocation
Time Finite Element Approach by Wooram Kim and J.N.Reddy, 2016. International Journal of
Structural Stability and Dynamics, Copyright [2016] by World Scientific.
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only one additional parameter, is that the generalized-α method uses two additional

parameters to evaluate the inertia and other type of forces in the structural dynamics

equation at two adjacent equilibrium points. By optimizing all four parameters, the

generalized-α method can retain the second-order accuracy for any dissipative case.

In general, among infinite numbers of dissipative cases which can be obtained from

any time integration algorithm, the asymptotic annihilation and no-dissipation cases

are most important in practical analyses. Especially, the asymptotic annihilation

case has a very special property that can eliminate any artifact that comes from

the high frequency range within one time step. Usually, the artifact of the high

frequency is due to poor representations of spatial domain in numerical methods.

However, the asymptotic annihilation case obtained from the generalized-α method

shows a large (period) error and becomes too dissipative even with considerably small

time step. Some of the traditionally developed asymptotic annihilation algorithms,

such as the Houbolt and Park methods, are designed to perform as the asymptotic

annihilation case only. Especially, the Park method is not too dissipative in practical

low frequency ranges when it is compared with the asymptotic annihilation case of

the generalized-α method. Naturally, considerably small time step should be used

in the the asymptotic annihilation case of the generalized-α method to match the

performance of some accurate traditional asymptotic annihilation algorithms, thus

requiring increased computational expense.

A totally different approach has been taken by Baig and Bathe [35, 40], where an

effective and unconditionally stable asymptotic annihilation time integration algo-

rithm was developed by simply combining two existing well-known time integration

schemes. In this method, the time interval was divided into two sub-steps. For

the first sub-step, the one-step average constant acceleration case of the Newmark

scheme (also called the trapezoidal rule) was used. For the second sub-step, the
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results obtained from the first sub-step were used as the mid-point properties of the

three-point Euler backward scheme. Unlike the generalized-α method, which was

designed to control dissipation levels, the method of Baig and Bathe cannot con-

trol the dissipation, but rather performs only as an asymptotic annihilation scheme.

However, the Baig and Bathe method shows much better performance compared

with the asymptotic annihilation case of the generalized-α method. It can effectively

eliminate high frequency effects introducing very small algorithmic damping into low

frequency range. However, the absence of the dissipation control capability in any

time integration algorithm can also be viewed as a handicap, while not having any

specification of parameter in the Baig and Bathe method was considered a desirable

feature of it by Bathe and Noh [8]. In general, a small amount of numerical damping

in low frequency region can help to stabilize solutions in nonlinear dynamic systems,

and dissipative time integration algorithms bring out not only prescribed level of

dissipation in high frequency range but also certain amount of algorithmic damping

in low frequency range. In many cases, a very small amount of algorithmic damping

is enough to stabilize solutions in nonlinear dynamic systems. Since a less dissipative

case can provide more accurate numerical solutions compared with the asymptotic

annihilation case within a family of time integration algorithms, algorithmic dissi-

pation should be used at the minimum if the purpose of its use is not a complete

elimination of the high frequency effect.

It should be also noted that asymptotic annihilation time integration algorithms

may produce very inaccurate numerical solutions even with a reasonable time step

size. In general, nonlinear analysis does not allow the modal analysis and it may not

be an easy task for a user to select a suitable time step size at the very beginning

of the analysis. If a large time step size is chosen in the first trial, the asymptotic

annihilation case may filter out some important low frequency information and the
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user may not know about it. In many cases, distorted numerical solutions may look

reasonably good, which can make a user stop refining the numerical solutions. One

interesting and important observation is that the no-dissipation case does not elimi-

nate any high frequency effect. However, it just includes the high frequency mode in

the numerical solution with large errors. Even though the quality of the solution ob-

tained from the no-dissipation case with large time step is not acceptable, inclusion

of some spurious responses in numerical solutions can be used as an indication to re-

fine the time step size according to our numerical experiments. If the no-dissipation

case is not working in some nonlinear problems, causing instability, not only the

asymptotic annihilation case but also some other less dissipative cases can be used.

Thus, it is recommended that one use various dissipation levels and time step sizes

even though it requires additional computational effort.

The purpose of this study is to develop a new family of time integration algo-

rithms with dissipation control capability (like in the generalized-α method) while

minimizing the algorithmic damping in low-frequency regime (i.e., embracing the

idea of the Baig and Bathe method). Towards this end, we develop a new fam-

ily of time integration algorithms based on the collocation finite element approach.

Thus, the proposed family of algorithms is designed to possess the dissipation con-

trol capability through the collocation parameters, while adopting the computational

structure of the Baig and Bathe method. This is accomplished by replacing the origi-

nal second-order time differential equation of structural dynamics with an equivalent

set of first-order equations and minimizing their residuals in a non-conventional set-

ting, resulting in the one-step and two-step time integration schemes. An interesting

linear spring example, which is a modification of the original example of Bathe and

Noh [8], is used as an numerical example to demonstrate (a) a potential misuse of

time integration algorithms, which work as only asymptotic annihilation case and
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(b) some advantages of algorithms with dissipation control capability. The choice of

the collocation points within the time interval serve as the main mechanism for the

dissipation control in the new algorithm.

2.2 Development

2.2.1 Mixed Model and Related Concepts

Various types of numerical methods can be employed to spatially discretize partial

differential equations (PDEs). After applying the spatial discretization on original

PDEs associated with structural dynamics, the resulting ordinary differential equa-

tions (ODEs) in time are of the form

Mü (t) + Cu̇ (t) + K (t) u (t) = f (t) (2.1)

with given initial conditions

u (0) = u0 (2.2a)

u̇ (0) = v0 (2.2b)

where M is the mass matrix, C is the damping matrix, K (t) is the nonlinear stiffness

matrix, f is the force vector, and u is the displacement vector. Note that K (t) u (t)

is used in place of the general nonlinear internal force vector, since we are assuming

that the nonlinear internal force vector is linearized from the spatial discretization.

Thus the nonlinearity of internal force is included in the stiffness matrix as K (t) =

K (u(t)). For the linear case, constat K can be used in place of K (t). Eq. (2.1) can
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be expressed as a set of the following lower-order equations:

Ma (t) + Cv (t) + K (t) u (t) = f (t) (2.3a)

v (t) = u̇ (t) (2.3b)

a (t) = v̇ (t) (2.3c)

where v is the velocity vector and a is the acceleration vector. It is advantageous

to rewrite Eq. (2.1) as a set of lower-order equations given in Eqs. (2.3a)-(2.3c) for

following reason: Eq. (2.3a) is already an algebraic equation valid for any time; this

will allow us to set the force equilibrium at any desired time. Equations (2.3b)

and (2.3c) can be converted to algebraic equations through a residual minimization

procedure in contrast to directly manipulating Eq. (2.1) to obtain the algebraic

equations through some approximation procedure (e.g., using time-approximations

schemes or the finite element method in time). If Eq. (2.1) is directly approximated

in time using the finite element procedure based on a weighted-residual method,

higher-order approximation of the displacement vector is required and the equation

is satisfied only in an integral sense. By introducing the velocity and acceleration

vectors as dependent variables, we can apply the finite element procedure in time on

Eqs. (2.3b) and (2.3c) using lower-order approximations and use Eq. (2.3a) only for

satisfying the equilibrium requirement. Due to the fact that u, v, and a have different

units, any computational model based on the use of the set in Eqs. (2.3a)-(2.3c) is

termed a mixed model [82, 77, 83].

Based on the mixed formulation, time finite element models can be developed over

a time (finite element) interval ts ≤ t ≤ ts+1, where the size of the time interval is

∆t = ts+1−ts. Strictly speaking, from consistency considerations, u, v, and a should
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be interpolated with different polynomial orders (i.e., if a is approximated using a

pth degree polynomial, then v and u should be approximated using (p + 1)th and

(p + 2)th degree polynomials, respectively). However u, v and a are independently

approximated by using equal lower order of interpolations and treated as nodal values

of the time finite element in our study. And the inconsistency caused due to equal

lower order approximations of all three variables are utilized to control dissipation.

If it is a nonlinear problem, exclusion of any time dependent coefficient (e.g.,

K(t)) in the integral statement will preserve the simplicity in the final form of the

algorithm, which can be easily implemented on a computer. The Newmark scheme is

a good example of this type of equilibrium setting. In the Newmark scheme[23] the

equilibrium is considered at t = ts+1 (i.e., t = ts+ ∆t), that is, Eq. (2.1) is evaluated

at time t = ts+1:

Müs+1 + Cu̇s+1 + Ks+1us+1 = fs+1 (2.4)

Here vectors and matrices with subscript s + 1 denote that they are functions of

time and are evaluated at time t = ts+1. Then the Newmark scheme uses truncated

Taylor’s series, which is given as

us+1 = us + ∆t u̇s +

(
1

2
− β

)
(∆t)2üs + β(∆t)2üs+1 (2.5a)

u̇s+1 = u̇s + (1− γ) ∆t üs + γ∆t üs+1 (2.5b)

where β and γ are the two truncation parameters. Expressions given in Eqs. (2.5a)

and (2.5b) are used to eliminate u̇s+1 and üs+1 in Eq. (2.4) and the unknown vector

us+1 is expressed in terms of us and known mechanical, inertial, and damping forces
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as follows (see Reddy[1]; assuming that the mass and damping matrices are not

functions of u):

K̂s+1us+1 = F̂s,s+1 (2.6)

where

K̂s+1 = Ks+1 + a3M + a6C

F̂s,s+1 = Fs+1 + FI
s + FD

s

FI
s = M (a3us + a4u̇s + a5üs)

FD
s = C (a6us + a7u̇s + a8üs)

(2.7)

and

a3 =
1

β(∆t)2
, a4 = a3∆t, a5 =

1

2β
− 1

a6 =
γ

β∆t
, a7 =

γ

β
− 1, a8 =

(
γ

2β
− 1

)
∆t

(2.8)

After obtaining us+1, üs+1 and u̇s+1 are updated as

üs+1 = a3(us+1 − us)− a4u̇s − a5üs

u̇s+1 = u̇s + a2üs + a1üs+1

(2.9)

where

a1 = γ∆t, a2 = (1− γ)∆t (2.10)

Some “improved schemes” based on Eqs. (2.5a) and (2.5b) have been proposed in

some what ad-hoc way (“end justifies the means” approach). For example, the

HHT-α method of Hilber, Hughes, and Taylor[20] considered the equilibrium of the

36



www.manaraa.com

following equation in lieu of Eq. (2.4):

Müs+1 + (1 + αh) Cu̇s+1 − αhCu̇s

+ (1 + αh) Ks+1us+1 − αhKsus = (1 + αh) fs+1 − αhfs
(2.11)

where αh is a parameter whose value is chosen to control certain numerical response

of the scheme. In a similar way, the WBZ-α method[34] considered the equilibrium

of

(1− αb) Müs+1 + αbMüs + Cu̇s+1 + Ks+1us+1 = fs+1 (2.12)

where αb is an additional parameter. We note that the inertia term Müs+1 of

Eq. (2.4) is evaluated as (1− αb) Müs+1 +αbMüs. Finally, the generalized-α method

[7, 45, 81] considered the equilibrium of

(1− αm) Müs+1 + αmMüs + (1− αf ) Cu̇s+1 + αfCu̇s

+ (1− αf ) Ks+1us+1 + αfKsus = (1− αf ) fs+1 + αf fs

(2.13)

where αm and αf are two independent parameters. The generalized-α method in-

cludes the HHT-α and the WBZ-α method as special cases (set αm = 0 and αf = −αh

to obtain the HHT-α method and αm = αb and αf = 0 to obtain the WBZ-α

method). In all three methods, the Newmark approximations given in Eqs. (2.5a)

and (2.5b) are used to eliminate u̇s+1 and üs+1, and to obtain final algebraic equa-

tions for us+1 in terms of known quantities. Note that Eqs. (2.11) and (2.13) contain

stiffness matrix evaluated at two different times, and they should be tracked sepa-

rately during iterations in a nonlinear analysis.

The original paper by Hilber, Hughes, and Taylor[20] did not have the terms involving the
damping matrix C; Eq. (2.11) is taken from Ref. [49].
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In current study we will consider equilibrium of Eq. (2.3a) at two different time

steps, namely at t = ts + τ∆t and t = ts + ∆t, where 0.5 ≤ τ < 1.0, as shown in

Fig. 2.1. For an arbitrary point within a time step, the equilibrium can be expressed

as

Mas+τ + Cvs+τ + Ks+τus+τ = fs+τ (2.14)

In our study we will consider arbitrary equilibrium point (i.e., t = ts + τ∆t) for the

first sub-step and fixed equilibrium point for the second sub-step (i.e., t = ts + ∆t).

We note that current notion of setting the equilibrium at two different times is

very similar to the collocation approach considered by Hilber and Hughes[27, 49].

The collocation approach considered by Hilber and Hughes used the same collocation

points for both the equilibrium setting and Newmark’s approximation. In the current

case, τ is similar to the collocation parameters used in Ref. [27], but τ only determines

the size of the first sub-step and the location of the second node of the second sub-

step. Details are discussed in the later sections.

We now formulate our new schemes based on the time finite element approach

applied to the set of first-order equations involving displacement, velocity, and accel-

eration vectors. To be specific, the collocation finite element model is employed to

discretize Eqs. (2.3b) and (2.3c) in time with two independent collocation parameters

for each sub-step. In other words, we develop a new family of time approximations

based on the collocation finite element model where the collocation points are chosen

judiciously, as will be discussed in detail in the sequel.

As briefly stated before, another advantage of the mixed formulation is that the

evaluation of Eqs. (2.3b) and (2.3c) at a certain collocation point within the time

interval after approximating variables with equal order of the Lagrange interpolation
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Figure 2.1: Concept of algorithm
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functions can provide the dissipation control mechanism. The collocation approach

can provide dissipation control mechanism to the algorithm because the level of

algorithmic damping for a given size of time step changes depending on locations

(i.e. collocation points) where the residuals are evaluated within the time interval.

The collocation points will play a role very similar to the weight parameters used

by Zienkiewicz[79, 59]. Thus the collocation point in the time finite element plays

an important role in adjusting the level of algorithmic dissipation. Details of the

dissipation control mechanism will be discussed at the end of the section.

2.2.2 First Sub-Step

In the Baig and Bathe method, the average acceleration method of the New-

mark schemes (i.e., the trapezoidal rule) was employed for the first sub-step and the

three-point Euler backward method was employed for the second sub-step. In every

recurrence, properties obtained from the first sub-step were used as the second nodal

properties of the second sub-step. In our study, we adopt exactly the same strategy

of the Baig and Bathe method in developing new time schemes. Details of general

time finite element approximations of time dependent variables can be found in the

works of Oden [84], Argyris and Mlejnek [85], Hulbert [36], Fung [59] and Singh and

Kalra [86]. Hulbert used the Lagrange interpolations in time to approximate the dis-

placement and velocity vectors and applied the time discontinuous Galerkin method.

Fung used the Hermite cubic interpolation functions in time to approximate the dis-

placement vector with the weighted residual method. Also some of very fundamental

concepts of time finite element approximations are well provided in Refs. [79, 84, 87].

Since we lowered the differentiability requirement on the displacement by including

the velocity and acceleration vectors in the mixed formulation, we can use the same

and lower order approximations for all variables.
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For the first sub-step, we use the time collocation finite element approach to

discretize Eqs. (2.3b) and (2.3c) over ts ≤ t ≤ ts+τ . For the time discretization of

the first sub-stpe, we use the linear interpolations of

ψLs =
τ∆t − t + ts

τ∆t
, ψLs+τ =

t − ts
τ∆t

(2.15)

where the superscript L is used for the linear interpolation functions. Note that τ is

the same parameter used in Eq. (2.14). Here, τ adjusts the time element size, and

naturally the equilibrium of the first sub-step is evaluated at the end of it. The length

of the time element of the first sub-step is computed as τ∆t and the time at end of

the first sub-step is computed as ts+τ = ts + τ∆t . Fig. 2.1 shows the time elements

and the idea of the new algorithm schematically. Using Eq. (2.15) the variables in

the first sub-step can be approximated as

u (t) ≈ ū (t) = ψLs (t) us + ψLs+τ (t) us+τ (2.16a)

v (t) ≈ v̄ (t) = ψLs (t) vs + ψLs+τ (t) vs+τ (2.16b)

a (t) ≈ ā (t) = ψLs (t) as + ψLs+τ (t) as+τ (2.16c)

where, ū, v̄, and ā are approximated variables. Then the substitution of Eqs. (2.16a)-

(2.16c) into Eqs. (2.3b) and (2.3c) gives the residuals

r1 (t) = v̄ (t)− ˙̄u (t) 6= 0 (2.17a)

r2 (t) = ā (t)− ˙̄v (t) 6= 0 (2.17b)

For the minimization of the residuals in Eqs. (2.17a) and (2.17b), we employ the
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collocation method which can be stated in the weighted residual form as

0 =

∫ ts+τ

ts

δ (t − θ1τ∆t) r1dt , ts ≤ t ≤ ts+τ (2.18a)

0 =

∫ ts+τ

ts

δ (t − θ1τ∆t) r2dt , ts ≤ t ≤ ts+τ (2.18b)

where θ1 is the parameter which determines the collocation point of the first sub-

step. For unconditionally stable schemes, θ1 should be chosen from the interval

0.5 ≤ θ1 ≤ 1.0. Then vs+τ and as+τ can be stated in term of the known properties

at t = ts and us+τ as

vs+τ = c1us+τ + c2us + c3vs (2.19a)

as+τ = c1vs+τ + c2vs + c3as (2.19b)

and the coefficients are defined as

c1 =
1

τθ1∆t
, c2 = − 1

τθ1∆t
, c3 =

θ1 − 1

θ1

(2.20)

As mentioned previously we consider the equilibrium at t = ts + τ∆t as given in

Eq. (2.14). By substituting Eqs. (2.19a) and (2.19b) into Eq. (2.14), we get the fully

discretized equation of

1K̂us+τ =1 f̂ (2.21)

where 1K̂ is the effective coefficient matrix of the first sub-step, us+τ is the displace-

ment vector at t = ts + τ∆t, and 1f̂ is the effective force vector of the first sub-step.
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1K̂ can be calculated as

1K̂ = c4M + c5C + Ks+τ (2.22)

where

c4 = c1
2, c5 = c1 (2.23)

And 1f̂ can be calculated as

1f̂ = M (c6us + c7vs + c8as) + C (c9us + c10vs) + fs+τ (2.24)

where

c6 = −c1c2, c7 = − (c1c3 + c2)

c8 = −c3, c9 = −c2, c10 = −c3

(2.25)

Note that each approximation of the first sub-step developed herein is equivalent to

the well-known generalized trapezoidal family[6].

2.2.3 Second Sub-Step

For the second sub step, we also use the collocation finite element approach to

discretize Eqs. (2.3b) and (2.3c) over ts ≤ t ≤ ts + ∆t . Here we used the quadratic
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interpolation functions

ψQs (t) =
(t − ts − τ∆t)(t − ts −∆t)

τ∆t2

ψQs+τ (t) =
(t − ts)(t − ts −∆t)

τ∆t2(τ − 1)

ψQs+1 (t) =
(t − ts)(t − ts − τ∆t)

∆t2(τ − 1)

(2.26)

the superscript Q is used for the quadratic interpolation functions. Using Eq. (2.26),

the variables in the second sub-step can be approximated as

u (t) ≈ ū (t) = ψQs (t) us + ψQs+τ (t) us+τ + ψQs+1 (t) us+1 (2.27a)

v (t) ≈ v̄ (t) = ψQs (t) vs + ψQs+τ (t) vs+τ + ψQs+1 (t) vs+1 (2.27b)

a (t) ≈ ā (t) = ψQs (t) as + ψQs+τ (t) as+τ + ψQs+1 (t) as+1 (2.27c)

where, ū, v̄, and ā are approximated variables. Similar to the first sub-step, the

minimization of the residuals in the second sub-step can be done as

0 =

∫ ts+1

ts

δ (t − θ2∆t) r1dt , ts ≤ t ≤ ts+1 (2.28a)

0 =

∫ ts+1

ts

δ (t − θ2∆t) r2dt , ts ≤ t ≤ ts+1 (2.28b)

where θ2 is the parameter that determines the collocation point of the second sub-

step and ts+1 = ts + ∆t . Then vs+1 and as+1 can be stated in term of the known

properties at t = ts, t = ts+τ and us+1 as

vs+1 = d1us+1 + d2us+τ + d3us + d4vs+τ + d5vs (2.29a)
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as+1 = d1vs+1 + d2vs+τ + d3vs + d4as+τ + d5as (2.29b)

and the coefficients are defined as

d1 =
τ − 2θ2

θ2(τ − θ2)∆t
, d2 =

2θ2 − 1

τθ2(τ − θ2)∆t

d3 =
(1− τ)(τ + 1− 2θ2)

τθ2(τ − θ2)∆t

d4 =
θ2 − 1

τ(θ2 − τ)
, d5 =

(θ2 − 1)(τ − 1)

τθ2

(2.30)

For the second sub-step, we consider the equilibrium at t = ts + ∆t as mentioned

before, which can be stated as

Mas+1 + Cvs+1 + Ks+1us+1 = fs+1 (2.31)

By substituting Eqs. (2.29a) and (2.29b) into Eq. (2.31) we obtain

2K̂us+1 =2 f̂ (2.32)

where 2K̂ is the effective coefficient matrix of the second sub-step, us+1 is the dis-

placement vector at t = ts + ∆t, and 2f̂ is the effective force vector of the second

sub-step. 2K̂ can be calculated as

2K̂ = d6M + d7C + Ks+1 (2.33)

where

d6 = d1
2, d7 = d1 (2.34)
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and 2f̂ can be calculated as

2f̂ = M (d8us + d9us+τ + d10vs + d11vs+τ + d12as + d13as+τ )

+ C (d14us + d15us+τ + d16vs + d17vs+τ ) + fs+1

(2.35)

where

d8 = −d1d3, d9 = −d1d2, d10 = −(d1d5 + d3)

d11 = −(d1d4 + d2), d12 = −d5, d13 = −d4

d14 = −d3, d15 = −d2, d16 = −d5, d17 = −d4

(2.36)

Note that us+τ , vs+τ and as+τ obtained from the first sub-step at each incremental

time step.

2.2.4 Collocation Parameters and Dissipation

Figure 2.2: Schematic variation of approximated velocities: (a) the first sub-step;
and (b) the second sub-step.
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In the new algorithm, collocation parameters are important because they can ad-

just amount of algorithmic damping depending on locations within the time interval

where the residuals are evaluated. Fig. 2.2 is showing how the residual equation

given in Eq. (2.18a) is evaluated in the collocation sense. For the first sub-step, θ1

plays a similar role of the weight effect parameter considered in Ref. [79] and alpha

parameter in the generalized trapezoidal rule[6]. And the mid-point rule can be ob-

tained by setting θ1 = 0.5, while backward scheme is obtained from θ1 = 1.0. If θ1

is chosen as 0.5 in the first sub-step, then the evaluation of Eqs. (2.18a) and (2.18b)

will be conducted at t = ts+ 0.5τ∆t , which will give no-dissipation case. And choice

of θ1 = 1.0 will give the asymptotic annihilation case. So the first sub-step will have

various dissipation level depending on values of θ1 chosen form 0.5 to 1.0.

For the second sub-step, θ2 plays a similar role of θ1 in the first sub-step. However,

profile of ˙̄u and v̄ are linear and quadratic respectively as shown in Fig. 2.2(b). Note

that 3-point Euler backward method can be obtained with θ2 = 1.0. Thus choice

of θ1 = 0.5, θ2 = 1.0, and τ = γ will give the Baig and Bathe method[35] where γ

is the parameter used in the Baig and Bathe method. For this case, the complete

algorithm becomes an asymptotic annihilation algorithm. Also the choice of θ1 = 0.5,

θ2 = 0.8535534 and τ = 0.5, will make the complete algorithm non-dissipative. Other

combination of θ1 and τ will change the specific value of θ2 for specified levels of

dissipation. We will relate two collocation parameters and the spectral radius in the

high frequency limit (a user-specified dissipation control parameter) in the analysis

section. Then a user will be able to specify any level of dissipation through the

spectral radius in the high frequency limit.
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2.3 Analysis

We can analyze the new time integration algorithm with a single -degree -of

-freedom problem [49, 17, 88] of

ü + 2ξωu̇ + ω2u = f (2.37)

with the initial conditions

u(0) = u0, u̇(0) = v0 (2.38)

For the free vibration case (i.e., ξ = f = 0) we can rewrite Eq. (2.37) by using the

new algorithm given in Eqs. (2.21) and (2.32) as follows:

xs+1 = Axs, s ∈ {0, 1, ..., N − 1} (2.39)

where {xi} = {ui, vi, ai}T for i = s, s + 1 and A is called the amplification matrix.

We note that ai can be condensed out by using the equilibriums at ts and ts+1. But,

to keep the consistency with the original matrix and vector form of the discretized

equation, we keep accelerations. Similarly, three by three amplification matrix was

used in the work of Bathe and Noh[8] with the exactly the same equilibrium settings

as ours. Then the computational characteristics of the new time integration algo-

rithm can be studied by analyzing three eigenvalues of the amplification matrix (for

details see Refs. [20, 49]). After rewriting the single-degree-of-freedom problem by

using only the first sub-step, the spectral radius can be defined from the eigenvalues
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of A by

ρ1(Ω) = max
(∣∣λ1

1

∣∣ , ∣∣λ1
2

∣∣ , ∣∣λ1
3

∣∣) (2.40)

where λ1
i is the ith eigenvalue of A obtained from the first sub-step scheme and

Ω = ω∆t . One of three eigenvalues is always zero due to the equilibrium setting of

current algorithm. Then the θ1 can be selected according to

θ1 =
1

1 + ρ1 (∞)
(2.41)

where ρ1 (∞) is defined by

ρ1 (∞) = lim
Ω→∞

ρ1 (Ω) (2.42)

It should be noted that 0 ≤ ρ1 (∞) ≤ 1.0 does not violate the stability condition of

the first sub-step. The stability condition of the first sub-step is given by

0.5 ≤ θ1 ≤ 1.0 (2.43)

n a similar sense, we can also rewrite Eq. (2.37) in the form of Eq. (2.39) by com-

bining the first and second sub-steps. Then θ2 can be determined by conducting the

same eigenvalues analysis of A constructed from the completely combined algorithm.

The spectral radius of the new algorithm ρ2 can be defined by

ρ2(Ω) = max
(∣∣λ2

1

∣∣ , ∣∣λ2
2

∣∣ , ∣∣λ2
3

∣∣) (2.44)

where λ2
i is the ith eigenvalue of A obtained from the new algorithm which combines
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Eqs. (2.21) and (2.32). Here we define spectral radius of the new algorithm as

ρ2 (∞) = lim
Ω→∞

ρ2 (Ω) (2.45)

and ρ2 (∞) determines the dissipation of the combined algorithm at high frequency

limit. Since ρ2 (∞) determines the dissipation of the combined complete algorithm,

we may regard ρ2 (∞) as the spectral radius in high frequency limit (i.e., ρ∞) of the

complete algorithm. In current study ρ2 (∞) and ρ∞ are interchangeably used, and

θ2 is determined by

θ2 =
τ 2θ1 (ρ∞ − 1) + 1

2 (1− τθ1 (1− ρ∞))

+

√
τ 4θ1

2(ρ∞ − 1)2 − 4τ 2(1− τ)θ1
2(ρ∞ − 1) + 2τ 2θ1(ρ∞ + 1)− 4τθ1 + 1

2 (1− τθ1 (1− ρ∞))

(2.46)

where θ1 is usually selected as 0.5 which can be determined from Eq. (2.41) by setting

ρ1 (∞) = 1.0. It should be emphasized that the new algorithm can work as the no

dissipation case (ρ1(∞) = 1.0, ρ2(∞) = 1.0) and include the Baig and Bathe method

(ρ1(∞) = 1.0, ρ2(∞) = 0.0) as special cases.

In the new algorithm, the second sub-step will control the high frequency limit

dissipation level of the complete algorithm, which is very similar to the mechanism

of the Baig and Bathe method. In fact the complete algorithm can remain as no-

dissipation case (ρ∞ = 1.0), even if ρ1 (∞) = 0.0. However the accuracy will be

affected. In the Baig and Bathe method the second sub-step works as the asymptotic

annihilation case (ρ∞ = 0.0), while the first sub-steps cannot provide any algorithmic

damping because it is the trapezoidal rule. Unlike the Baig and Bathe method, the

new algorithm can control the dissipation level of the first sub-step through θ1 (by

specifying ρ1 (∞)) and proper choice of θ1 can contribute to the stability and increase
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the quality of numerical solutions in some severe nonlinear problems. However, we

limit our study only to the case of θ1 = 0.5 (i.e., ρ1(∞) = 1.0) to retain the second

order accuracy of the complete algorithm. If θ1 is selected from the interval of

0.5 < θ1 ≤ 1.0 instead of 0.5, the complete algorithm loses the second-order accuracy

and becomes first-order accurate.

2.3.1 Stability

The new algorithm is unconditionally stable [49, 25, 89] if 0.0 ≤ ρ1 (Ω) ≤ 1.0 and

0.0 ≤ ρ2 (Ω) ≤ 1.0 are provided for all Ω ∈ (0,∞). It can be easily shown that the

new algorithm is stable for any combination of θ1 and θ2 which are determined by

Eqs. (2.41) and (2.46).

Figure 2.3: Comparison of spectral radii
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Fig. 2.3 shows that the new algorithm is unconditionally stable and more accurate

for the large dissipative cases (ρ∞ = 0.0 and 0.4) compared with the generalized-α

method. Usually practical analyses choose ∆t in the range of ∆t ≤ T/10, where T

is period of the given dynamic system and ∆t is chosen size of the time step. Having

ρ ' 1.0 around ∆t/T = 0.1 is considered as one of the desirable properties of an

effective time integration algorithm, because an algorithm should not become too

much dissipative for this choice of ∆t . The spectral radius of the new algorithm is

closer to unity (=0.9995) when τ = 0.5 while the generalized-α method has noticeably

decreased value (=0.9697) from the unity at ∆t/T = 0.1 when ρ∞ = 0.0. However,

the generalized-α method shows slightly better characteristics of the spectral radius

than the new algorithm for ρ∞ > 0.5 when τ = 0.5 is used for the new algorithm.

But the spectral radius of the new algorithm can be improved by adjusting τ as

presented in Fig. 2.5. But the choice of τ that is too close to 1.0 should be avoided.

Here we only presented the effects of some values of τ on the spectral radius of the

algorithm. The effects of τ on the cases of ρ∞ = 0.0 and ρ∞ = 0.8 are presented in

Figs. 2.4 and 2.5, respectively. Details of τ will be discussed in sequel.

2.3.2 Accuracy

In many cases, the order of accuracy is defined from the local truncation error[20,

49, 17]. The local truncation error τe is defined by

τe = (∆t)−2

i=0∑
3

(−1)iAiu(tn+1−i) (2.47)

where A0 = 1, A1 is the trace of A, A2 is the sum of principal minors of A, A3 is the

determinant of A and u(t) is the exact solution of the problems. Then the algorithm

is called the kth order algorithm if τe = O(∆tk) is provided. For any setting of
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Figure 2.4: Effect of τ on spectral radius of new algorithm for ρ∞ = 0.0

Figure 2.5: Effect of τ on spectral radius of new algorithm for ρ∞ = 0.8
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admissible parameters with θ1 = 0.5, the new algorithm provides τe = O(∆t2), thus

the new algorithm is second-order accurate if θ1 = 0.5.

In the literature[27, 7], the accuracy of the time integration algorithms is also

explained by using the period elongation and the damping ratio. Both the period

elongation and the damping ratio are properties which are obtained by comparing

the algorithmic solution of Eq. (2.37) with the exact solution. In this paper, T̄ and

ξ̄ are used for the period and damping of the algorithmic solution. The comparison

of the period elongation and the damping ratio can provide more direct information

about the algorithm than the accuracy rate (i.e., the convergence rate) which is still

important mathematically. The period elongation and the damping ratio of the new

algorithm are compared with those of the generalized-α method in Figs. 2.6 and 2.7.

In the generalized-α method, period elongation and damping ratio are noticeably

large for ∆t ≥ T/10 for large dissipative cases (i.e., 0.0 ≤ ρ∞ ≤ 0.5). Especially,

the asymptotic annihilation case (i.e., ρ∞ = 0.0) of the generalized-α method has

noticeably large period elongation as shown in Figs. 2.8 and 2.10. For the new

algorithm case of ρ1(∞) = 1.0, ρ∞ = 0.0 and τ = 0.5 is identical to the Baig and

Bathe method which is already proven to be very effective asymptotic annihilation

algorithm. For some values of τ which is chosen from 0.5 ≤ τ < 1.0, the damping

ratio can be even improved while the period elongation increases slightly. Both the

generalized-α method and the new algorithm seem to perform nicely for ρ∞ = 0.8

as presented in Figs. 2.9 and 2.11. However, the new algorithm can have even a

better damping ratio by adjusting τ as shown in Fig. 2.11 when ρ∞ > 0.5 by slightly

sacrificing the period elongation as shown in Fig. 2.9.
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2.3.3 General Comments on the Choice and Effect of τ

In the new algorithm τ is included as one of three free parameters. It is shown

that τ can affect the spectral radius, damping ratio and period elongation in previous

sections. Here we explain some important features of τ .

First, for τ selected from 0.5 ≤ τ < 1.0, the stability of the linear system will not

be affected. But in nonlinear analyses, τ which is too close to 1.0 should be avoided.

If τ is too close to 1.0, noticeable decrease of the spectral radius will start at relatively

higher frequency range as shown in Fig. 2.4 and 2.5. Then less algorithmic damping

will be introduced in low frequency ranges. If the algorithm fail to bring out enough

amount of algorithmic damping into low frequency ranges with large time interval,

system can become unstable like in the case of the trapezoidal rule. However, choice

of τ from 0.5 ≤ τ ≤ 0.90 is considered safe according to our experience.

Second, proper selection of τ can improve the damping ratio while slightly de-

creasing the period accuracy. Our numerical results report that the period elongation

and the damping ratio are in trade-off type relation. As τ approaches to 1.0 (but it

should be less than 1.0), we obtain less algorithmic damping while the period error

increases. Thus user should be aware of this for a proper selection of τ , otherwise

we recommend τ = 0.5 as a standard case.

Third, proper choice of τ can be used to increase the computational efficiency in

linear analysis. We note that τ in our algorithm plays a similar role of γ in the Baig

and Bathe method[35, 40] even though effect of γ on accuracy of the algorithm was

not explained in detail in their original works. Recently, some roles of γ in the Baig

and Bathe method was discussed in Ref. [90]. In Ref. [41], a single effective coefficient

matrix was considered for the first and second sub-steps by setting γ = 2−
√

2. If we

chose ρ1(∞) = 1.0, ρ2(∞) = 0.0, and τ = 2−
√

2 in our algorithm, we obtained the
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same single effective coefficient matrix as that of the Baig and Bathe method. But

main difference between τ in our algorithm and γ in the Baig and Bathe method

is that τ works for every range of spectral radius while use of γ is fixed for the

asymptotic case only. For example, choices of ρ1(∞) = 1.0, ρ2(∞) = 0.5, and

τ = 4 − 2
√

3 ≈ 0.5358983848 in our algorithm will gives another single effective

coefficient matrix. In linear case (with constant K), this single effective coefficient

matrix is computed as

1K̂ =2 K̂ =
13.928203

∆t2 M +
3.7320508

∆t
C + K (2.48)

And use of Eq. (2.48) will require only single diagonalization of effective coefficient

matrix which is a huge saving in linear case as mentioned in [41].

Figure 2.6: Comparison of period elongations
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Figure 2.7: Comparison of damping ratios

2.4 Numerical Examples

We have analyzed the new algorithm using the single-degree-of-freedom prob-

lem. Here we verify its performance with several multi-degree-of-freedom problems.

First we begin with linear problems. We analyze a linear multi-degree of freedom

spring problem proposed by Bathe and Noh [8]. In the original problem of Bathe

and Noh, the high frequency filtering capability of the Baig and Bathe method was

demonstrated with this problem by using very stiff and flexible spring constants.

But in our study, we modify this problem to demonstrate some potential misuse of

general asymptotic annihilation algorithms. Then a linear 2-D standing wave type

problem [91] is solved by using algorithms, and the analytical series solution is used

for a precise comparison. As a nonlinear problem, the nonlinear FSDT (first-order
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Figure 2.8: Effect of τ on period elongation of new algorithm for ρ∞ = 0.0

Figure 2.9: Effect of τ on period elongation of new algorithm for ρ∞ = 0.8
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Figure 2.10: Effect of τ on damping ratio of new algorithm for ρ∞ = 0.0

Figure 2.11: Effect of τ on damping ratio of new algorithm for ρ∞ = 0.8
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shear deformation theory) plate problem given in Ref. [4] is analyzed with the new

algorithm. Numerical results are compared with the results obtained from various

schemes.

2.4.1 Linear Problems

Figure 2.12: Description of three degrees of freedom spring system used by Bathe
and Nho.

Bathe and Noh used a three degrees of freedom spring system shown in Fig. 2.12

to represent a simplified version of the complex structural system, which consists of

stiff and flexible parts. But we will use the same problem to represent rather general

simplified structural system with a moderate difference in stiffness. The governing

equation of the spring system shown in Fig. 2.12 is given by


m1 0 0

0 m2 0

0 0 m3




a1

a2

a3

+


k1 −k1 0

−k1 k1 + k2 −k2

0 −k2 k2




u1

u2

u3

 =


R1

0

0

 (2.49)

where u1 = sin ωpt and R1 is the reaction force at node 1. The initial conditions

of the zero displacement, velocity, and acceleration vectors (i.e., ui = 0, vi = 0 and

ai = 0 for i = 1, 2, 3) are used. Then by using the prescribed displacement at the
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first node, Eq. (2.49) can be reduced to

m2 0

0 m3


a2

a3

+

k1 + k2 −k2

−k2 k2


u2

u3

 =

k1u1

0

 (2.50)

Now we solve Eq. (2.50) by using the new algorithm, the generalized-α method and

the trapezoidal rule. A test problem of completely different characteristic can be

generated by simply adjusting one of spring constants of the original problem, and

it can be used to demonstrate potential misuse of the asymptotic annihilation case

and advantage of proper dissipation control. We use k1 = 50, k2 = 1, m1 = 0,

m2 = 1, m3 = 1, and ωp = 1.0. Only k1 has been significantly modified from the

original problem. With these specific problem data, the period of the prescribed

displacement becomes Tp = 6.28185 and the two natural periods of the system be-

come T1 = 6.346949 and T2 = 0.8796495. Since the ratio T1 to T2 is just 7.215,

we assume that both frequency modes are important and their effect should be in-

cluded in numerical solutions. To make our comparison even clearer, we use the

exact modal superposition solution of the modified problems for the comparison.

The exact solution of the second and third nodes are obtained by

u2 =0.1398887047 sin(7.142828012 t) + 1.009341274 sin(0.9899535310 t)

u3 =− 50.00 sin(t) + 0.0027966559 sin(7.142828012 t)

+ 50.48724248 sin(0.9899535310 t)

(2.51)

In this problem, displacement solutions does not present any noticeable differ-

ences between numerical solutions and the exact solution as shown in Fig. 2.13. As

Bathe and Nho[8] did, we use Tp to select ∆t. We use ∆t = Tp/10 = 0.6283185,

∆t = Tp/20 = 0.3141592 and ∆t = Tp/40 = 0.1570796 for our analysis. For For
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∆t = Tp/10 and ∆t = Tp/20, numerical solutions of the velocity and acceleration ob-

tained from the no-dissipation cases (the trapezoidal rule and the new algorithm with

ρ1(∞) = 1.0, ρ2(∞) = 1.0 and τ = 0.5) are very similar (but with noticeable period

errors) to the exact solution as can be seen in Figs. 2.14 and 2.15 and Figs. 2.17 and

2.18. However the asymptotic annihilation cases (ρ1(∞) = 1.0, ρ2(∞) = 0.0, the

Baig and Bathe method and the generalized-α method with ρ∞ = 0.0) are providing

very distorted velocity and acceleration solutions at the second node. If we sup-

pose that the problem in hand is much more complicated and nonlinear, user may

not know this kind of elimination of important frequencies. Thus less dissipative

cases including the no-dissipations case can be used together to prevent unnotified

elimination of important frequency modes. It should be also noted that better nu-

merical solutions can be obtained with asymptotic annihilation cases with smaller

∆t(= 0.1570796) as shown in Figs. 2.20 and 2.21, but after relatively long time, we

found noticeable amplitude decay. Of course, all numerical solutions can be improved

by using even smaller ∆t. Then the computational cost will also increase and the

advantage of the implicit method over the explicit method will be lost.

The specific computational procedure of the linear analysis is provided in Table

2.1 and 2.2.

2.4.2 Nonlinear Problems

As a nonlinear test problem we use the bending of an isotropic plate using the

FSDT. The specific computational procedure of the nonlinear analysis is provided in

Tables 1 and 3.

The governing equations of the FSDT [4, 1] are given as

ρh
∂2u0

∂t2
− ∂Nxx

∂x
− ∂Nxy

∂y
= 0 (2.52a)
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1. Parameters that should be selected by user:
0.5 ≤ τ < 1.0 (usually τ = 0.5),
0.0 ≤ ρ1 ≤ 1.0 (usually ρ1 = 1.0),
0.0 ≤ ρ2 ≤ 1.0 (Here, ρ2 can be considered as ρ∞.)
And note that ρ1 and ρ2 are used in place of ρ1(∞) and ρ2(∞),

respectively, for simplicity.

2. Parameters that can be calculated by selecting τ , ρ1 and ρ2:
θ1 = 1

1+ρ1
,

θ2 = τ2θ1(ρ2−1)+1
2{1−τθ1(1−ρ2)} +

√
τ4θ1

2(ρ2−1)2−4τ2(1−τ)θ1
2(ρ2−1)+2τ2θ1(ρ2+1)−4τθ1+1

2{1−τθ1(1−ρ2)}

3. Algorithm coefficients:
(The fist sub-step)
c1 = 1

τθ1∆t
, c2 = − 1

τθ1∆t
, c3 = θ1−1

θ1

c4 = c1
2, c5 = c1, c6 = −c1c2, c7 = − (c1c3 + c2)

c8 = −c3, c9 = −c2, c10 = −c3

(The second sub-step)

d1 = τ−2θ2
θ2(τ−θ2)∆t

, d2 = 2θ2−1
τθ2(τ−θ2)∆t

, d3 = (1−τ)(τ+1−2θ2)
τθ2(τ−θ2)∆t

d4 = θ2−1
τ(θ2−τ)

, d5 = (θ2−1)(τ−1)
τθ2

d6 = d1
2, d7 = d1, d8 = −d1d3

d9 = −d1d2, d10 = −(d1d5 + d3), d11 = −(d1d4 + d2)
d12 = −d5, d13 = −d4, d14 = −d3

d15 = −d2, d16 = −d5, d17 = −d4

Table 2.1: Summary of parameters and coefficients.

ρh
∂2v0

∂t2
− ∂Nxy

∂x
− ∂Nyy

∂y
= 0 (2.52b)

ρh
∂2w0

∂t2
− ∂Qx

∂x
− ∂Qy

∂y
−

[
∂

∂x

(
Nxx

∂w0

∂x
+ Nxy

∂w0

∂y

)

+
∂

∂y

(
Nxy

∂w0

∂x
+ Nyy

∂w0

∂y

)]
−q = 0

(2.52c)
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ρh3

12

∂2φx
∂t2

− ∂Mxx

∂x
− ∂Mxy

∂y
+ Qx = 0 (2.52d)

ρh3

12

∂2φy
∂t2
− ∂Mxy

∂x
− ∂Myy

∂y
+ Qy = 0 (2.52e)

where u0, v0 and w0 are the mid-plane displacement pointing x, y and z directions

respectively, and φx and φy are the rotations of a transverse line about the y and x

axes. The plate stress resultants are defined by

Nxx = A11
∂u0

∂x
+ A12

∂v0

∂y
+

1

2

[
A11

(
∂w0

∂x

)2

+ A12

(
∂w0

∂y

)2
]

(2.53a)

Nyy = A12
∂u0

∂x
+ A22

∂v0

∂y
+

1

2

[
A12

(
∂w0

∂x

)2

+ A22

(
∂w0

∂y

)2
]

(2.53b)

Nxy = A66

(
∂u0

∂y
+
∂v0

∂x
+
∂w0

∂x

∂w0

∂y

)
(2.53c)

Mxy = D66

(
∂φx
∂y

+
∂φy
∂x

)
(2.53d)

Mxx = D11
∂φx
∂x

+D12
∂φy
∂y

(2.53e)

Myy = D12
∂φx
∂x

+D22
∂φy
∂y

(2.53f)

Qx = A55

(
φx +

∂w0

∂x

)
(2.53g)

Qy = A44

(
φy +

∂w0

∂y

)
(2.53h)

and the coefficients of the isotropic FSDT plate are defined by

A11 = A22 =
hE

1− ν2
, A12 =

hνE

1− ν2
, A66 = hG, A44 = A45 = hKsG

D11 = D22 =
h3E

12(1− ν2)
, D12 =

h3νE

12(1− ν2)
, D66 =

h3G

12

(2.54)
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where E is Young’s modulus, G is the shear modulus, ν is Poisson’s ratio, Ks = 5/6

is the shear correction coefficient, and h is the thickness of the plate. The geometry

and the boundary conditions are presented in Fig. 2.22. We take the geometric

and material parameters for the problem as a = b = 50.0cm, h = 0.5 cm, E =

2.1× 106 N /cm2, ρ = 8.0× 10−6 N s2/cm4 and ν = 0.25. And the initial conditions

are taken as

u0 (x, y, 0) = v0 (x, y, 0) = w0 (x, y, 0) = φx (x, y, 0) = φy (x, y, 0) = 0

u̇0 (x, y, 0) = v̇0 (x, y, 0) = ẇ0 (x, y, 0) = φ̇x (x, y, 0) = φ̇y (x, y, 0) = 0

ü0 (x, y, 0) = v̈0 (x, y, 0) = ẅ0 (x, y, 0) = φ̈x (x, y, 0) = φ̈y (x, y, 0) = 0

(2.55)

We use uniformly distributed load with intensity q = 100.0×H (t) N/cm2, where

H (t) denotes the Heaviside step function. Using the biaxial symmetry, one quadrant

of the plate is chosen as the computational domain as shown in Fig. 2.22. We use

4×4 mesh of quadratic elements and specific terms of the matrices and force vectors

of the finite element model are provided in Ref. [4]. We use 2∆t in the new algorithm

and ∆t for the trapezoidal rule for fair comparison, and us+τ of the new algorithm

was computed from the finite element relation given in Eq. (2.27a). The nonlinear

solutions in each time step are obtained using Newton’s method. Note that we used

only three cases of the new algorithm (i.e., case 1: ρ1(∞) = 1.0, ρ2(∞) = 0.0

and τ = 0.5, case 2: ρ1(∞) = 1.0, ρ2(∞) = 0.0 and τ = 0.8750 and case 3:

ρ1(∞) = 1.0, ρ2(∞) = 0.9 and τ = 0.5). The nonlinear convergence criterion of

ε = 10−4, as given in Ref. [4], was used. With the choice of h = 0.5 cm, the plate

becomes rather thin (i.e., a/h = 100) and in-plane terms (Aij) in the stiffness matrix

become larger than those of bending (Dij). If h becomes smaller, making the plate

thinner, the system can become even more unstable as observed in the linear three
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degree-of-freedom presented in Ref. [8]. In general, some stable schemes become

unstable for nonlinear systems for large time steps, and choice of smaller h can even

worsen the stability. This discussion can be verified by the numerical results of

the nonlinear plate bending problem shown in the figures. Three cases of the new

algorithm yielded stable solutions as expected, while the solution obtained from the

trapezoidal rule became unstable after roughly 10, 000µs for ∆t = 200µs, as shown

in Figs. 2.23, 2.25, and 2.27. The case of ρ2(∞) = 0.9 provided the displacement

solution with smallest decay of amplitude for ∆t = 200µs among the schemes tested,

while case with τ = 0.8750 showed moderate decay of amplitude and largest period

elongation. It can be said that proper use of algorithmic dissipation can improved

the quality of the solution when large time interval is chosen. In this case roughly

one fourth of the first nonlinear period was used as the size of ∆t. Thus, our analysis

conducted with a single-degree-of-freedom problem still agrees with the result of

the nonlinear 2-D FSDT plate bending problem. As the time step decreases, the

difference between the solutions become negligible as shown in Fig. 2.24, while the

amplitude of the accelerations and velocities increased as the time step decreases and

they heavily depended on the scheme selected. The results are shown in Figs. 2.26,

and 2.28. Note that the new algorithm used twice the size of the time step used in

the trapezoidal rule (average constant acceleration method) for a fair comparison.

The specific computational procedure of the nonlinear analysis is provided in

Table 2.1 and 2.3.

2.5 Conclusions

In this study, a new family of one- and two-step time integration schemes have

been developed based on time collocation finite element approach, and combined

using the strategy of the Baig and Bathe method [35, 40] to form a set of complete
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algorithms which can be used to analyze linear and nonlinear structural dynamic

problems. Three algorithmic parameters are used to synthesize desired characteristics

of the algorithm. The analysis of the new algorithm has been conducted to relate

its parameters to the desired dissipation level in the high frequency limit. The new

algorithm is unconditionally stable and has second-order accuracy (The second order

accuracy is obtained only for the choice of θ1 = 0.5). The new algorithm is able to

control the dissipation in the high frequency limit while minimizing dissipation in the

low frequency ranges. The new algorithm showed better numerical performance than

the generalized-α method when it was analyzed and tested with linear and nonlinear

problems.

A linear spring problem, specially modified from Bathe and Noh[8], was used

to demonstrate the potential misuse of any asymptotic annihilation algorithm. De-

tecting distortions in numerical solutions was not easy when the asymptotic anni-

hilation algorithm was used alone. In our example, the no-dissipation cases of the

generalized-α method and the new algorithm detected the important high frequency

while asymptotic annihilation cases of them eliminated them when relatively large

time step was used. Thus use of various dissipation levels can prevent exclusion

of important frequency modes, and provide better indications for the solution re-

finement. However, even with considerably small time step, the amplitude decay

was noticeable in asymptotic annihilation cases. Some special schemes chosen from

the new algorithm could stabilize the nonlinear plate bending problem and provide

reasonably accurate numerical solutions with relatively large time step when the

trapezoidal rule becomes unstable.

Some special features of the new algorithm are that it can include the Baig and

Bathe method [35, 40] and provide a scheme that performs as no-dissipation case

(almost identical to the trapezoidal rule with half ∆t) as special cases. We also
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emphasize that the improved performance of the algorithm is not due to increased

computational cost when it is compared with the generalized-α method and the

trapezoidal rule.
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At the beginning of the computation
1. Evaluate K, C, M and f0.
2. Using u0 = u(0), v0 = v(0) and a0 = a(0).
3. Select parameters and compute constants. (See table 2.1 for details.)

For each increment of the time step

First sub-step
1. Impose boundary conditions, and compute us+τ from

1K̂us+τ = 1f̂ ,
where
1K̂ = c4M + c5C + K
1f̂ = M (c6us + c7vs + c8as) + C (c9us + c10vs) + fs+τ

2. Update vs+τ and as+τ as
vs+τ = c1us+τ + c2us + c3vs
as+τ = c1vs+τ + c2vs + c3as

Second sub-step (Use us+τ , vs+τ and as+τ obtained in the first sub-step.)
1. Impose boundary conditions, and compute us+1 from

2K̂ us+1 = 2f̂ ,
where
2K̂ = d6M + d7C + K
2f̂ = M (d8us + d9us+τ + d10vs + d11vs+τ + d12as + d13as+τ )

+C (d14us + d15us+τ + d16vs + d17vs+τ ) + fs+1

2. Update vs+1 and as+1 as follows:
vs+1 = d1us+1 + d2us+τ + d3us + d4vs+τ + d5vs
as+1 = d1vs+1 + d2vs+τ + d3vs + d4as+τ + d5as

Table 2.2: Summary of the new algorithm for linear structural system.
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At the beginning of the computation
1. Evaluate K0, C, M and f0.
2. Using u0 = u(0), v0 = v(0), find a0 = a(0).
3. Calculate parameters and constants. (See table 2.1 for details.)

For each time increment
First sub-step

1. Impose boundary conditions, and compute u1
s+τ = 1K̂

(
u0
s+τ

)−1 1f̂ ,
where u0

s+τ is the initial guess solution of the first sub-step and
1K̂ (us+τ ) = c4M + c5C + K (us+τ )
1f̂ = M (c6us + c7vs + c8as) + C (c9us + c10vs) + fs+τ

2. For r ≥ 1, Impose boundary conditions,
and compute incremental solution at (r+1)th iteration

δur+1
s+τ = 1T̂

(
urs+τ

)−11r̂
(
urs+τ

)
and update total solution as

ur+1
s+τ = urs+τ + δur+1

s+τ

where 1T̂ (us+τ ) = ∂1r̂(us+τ )
∂us+τ

and 1r̂ (us+τ ) =1 f̂ −1 K̂ (us+τ ) us+τ .

3. Repeat 2. until converged us+τ (≈ ur+1
s+τ ) is obtained.

4. Update vs+τ and as+τ as
vs+τ = c1us+τ + c2us + c3vs
as+τ = c1vs+τ + c2vs + c3as

Second sub-step(Use us+τ , vs+τ and as+τ obtained in the first sub-step.)

1. Impose boundary conditions, and compute u1
s+1 = 2K̂

(
u0
s+1

)−1 2f̂ ,
where u0

s+1 is the initial guess solution of the second sub-step and
2K̂
(
u0
s+1

)
= d6M + d7C + K (us+1)

2f̂ = M (d8us + d9us+τ + d10vs + d11vs+τ + d12as + d13as+τ )
+C (d14us + d15us+τ + d16vs + d17vs+τ ) + fs+1

2. For r ≥ 1, impose boundary conditions,
and compute incremental solution at (r+1)th iteration

δur+1
s+1 = 2T̂

(
urs+1

)−12r̂
(
urs+1

)
and update total solution as

ur+1
s+1 = urs+1 + δur+1

s+1

where 2T̂ (us+1) = ∂2r̂(us+1)
∂us+1

and 2r̂ (us+1) =2 f̂ −2 K̂ (us+1) us+1.

3. Repeat 2. until converged us+1 (≈ ur+1
s+1) is obtained.

4. Update vs+1 and as+1 as follows:
vs+1 = d1us+1 + d2us+τ + d3us + d4vs+τ + d5vs
as+1 = d1vs+1 + d2vs+τ + d3vs + d4as+τ + d5as

Table 2.3: Summary of algorithm for nonlinear structural system.
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3. TIME FINITE ELEMENT METHOD II

3.1 Introduction

The equation of structural dynamics can be written as

Mü(t) + Cu̇(t) + Ku(t) = f(t) (3.1)

where M is the mass matrix, C is the viscous damping matrix, K is the stiffness

matrices, f(t) is the vector of applied forces, u(t) is the displacement vector, u̇(t) is

the velocity vector, and ü(t) is the acceleration vector. A solution of the initial value

problem described by Eq. (3.1) satisfies the following initial conditions

u(0) = u0 (3.2a)

u̇(0) = v0 (3.2b)

where u0 and v0 are the initial displacement and velocity vectors, respectively.

Recently, several higher-order time integration algorithms [36, 60, 43] have been

developed based on the weighted residual method for the analysis of linear structural

dynamics described by Eqs. (3.1) and (3.2). Among the existing weighted residual

method based higher-order algorithms, Fung’s algorithms possess many of preferable

attributes [33, 74], such as improve accuracy, controllable algorithmic dissipation and

unconditional stability.

In the development of Fung’s algorithms, the displacement vector was approxi-

mated in time by using the (n+ 1)th-degree polynomial to satisfy the displacement

and velocity initial conditions. To satisfy the initial conditions, the constant term
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of the approximation was chose as the initial displacement, and the coefficient vec-

tor of the linear term of the approximation was chose as the initial velocity. For

the remaining higher-degree terms of the approximation, corresponding n unknown

coefficient vectors were used. Then, the traditional weighted residual method was

employed to minimize the residual vector which was defined by substituting the ap-

proximated displacement vector into the equation of structural dynamics. In Fung’s

algorithms, the weight parameters [16, 59] were used to rewrite the integral forms

of the weighted residual statements as the algebraic forms. In the algebraic forms

of the weighted residual statements, the weight parameters were optimized by using

the single-degree-of-freedom problems to achieve preferable attributes. As a result

of the optimization of the weight parameters, Fung’s algorithms can control the full

range of algorithmic dissipations in the high frequency limit through a free parameter

(i.e., the spectral radius in the high frequency limit). If the displacement vector is

approximated as (n+ 1)th-degree polynomial, (2n− 1)th- and (2n)th-order accurate

algorithms are obtained, n being the number of the unknown coefficient vectors to

be determined.

As discussed in Ref. [60], however, Fung’s algorithms require additional weight

parameters to retain the improved order of accuracy for the particular solutions

in the presence of higher-order externally applied forces. These additional weight

parameters can be considered as a minor drawback of Fung’s algorithms.

Idesman [43] also employed the weighted residual method to develop another

family of higher-order algorithms. In the development of Idesman’s algorithms, the

equation of structural dynamics was rewritten as a set of two first-order equations by

including the velocity vector as an additional time dependent variable. In the rewrit-

ten first-order equations (also called mixed formulations), the displacement and ve-

locity vectors were approximated by using the equal (n+1)th-degree polynomial, and
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the approximated displacement and velocity vectors satisfies the displacement and

velocity initial conditions, respectively. Then, the two rewritten first-order equations

were used to define two residual vectors in time. In the weighted residual statements,

two specially constructed weighted functions were used. In Idesman’s original work

[43], he stated that his algorithms could provide (2n)th-order accuracy, which is one

order higher than other equivalent (in terms of computational cost) algorithms. As

a matter of fact, however, Idesman’s algorithms can provide only nth-order accuracy

if the parameter included in the weight functions is restated as the form suggested

in Ref. [43]. This is a serious drawback of Idesman’s algorithms, because other well

known algorithms can provide (2n−1)th- or (2n)th-order accuracy for the same level

of computational effort.

Other than the poor accuracy, Idesman’s algorithms cannot control the algorith-

mic dissipations in the high frequency limit in a real sense. However, Idesman’s

algorithms can change overall profiles of spectral radii, while keeping the ultimate

spectral radii [44, 33] as the same. As a result of the limited dissipation control

capability, his algorithms cannot include the non-dissipative and asymptotic anni-

hilating cases as special cases of the algorithms, which is another serious drawback

in a practical view point. As he mentioned in Ref. [43], it should be noted that the

algorithm can become slightly unstable near the low frequency limit, depending on

the choice of the parameter included in the weight functions.

In both methods, the unknown coefficient vectors of the approximations do not

have physical meanings. Due to this, the solutions at the end of the time interval

should be computed by using the approximations, once these coefficient vectors are

determined by solving the final form of fully discrete equations.

The purpose of this study is to eliminate some shortcomings and limitations of

the existing weighted residual method based higher-order algorithms. To this end,
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we approximate the displacement vector of the linear structural dynamics by using

the Hermite interpolation functions in time.

With the Hermite approximation, Eq. (3.1) can be directly manipulated to define

the residual vector. To reduce the number of the weight parameters in the algebraic

forms of the weighted residual statements, we use two different order time derivatives

of the residual vector in the modified weighted residual statements. Eq. (3.1) and

its time derivatives at the time nodes are also used to eliminate the second- and

higher-order nodal time derivatives included in the approximation of the displace-

ment. Through this unique setting of computational framework, we expect our new

algorithms to be more efficient and intuitive than the existing algorithms.

3.2 Development

3.2.1 Hermite Approximations in Time

In this study, general pth-degree Hermite interpolation functions [85, 92] without

internal nodes are considered for the development of the new family of time integra-

tion algorithms, p being an odd integer greater than or equal to 3. The schematic

concept of the time element obtained by using the pth-degree Hermite interpolation

functions over the time interval ( ts ≤ t ≤ ts+1 ) is presented in Fig. 3.1.

By using the pth-degree Hermite interpolation functions, the displacement vector

u(t) in Eq. (3.1) can be approximation as

u(t) ∼= ũ(t) =

p−1
2∑

k=0

(
sφk(t)

(k)

u s + s+1φk(t)
(k)

u s+1

)
(3.3)

where
(k)

u s and
(k)

u s+1 are the kth-order nodal time derivatives of the displacement vec-

tor at ts and ts+1, respectively, sφk(t) is the Hermite interpolation function associated

with
(k)

u s, and s+1φk(t) is the Hermite interpolation function associated with
(k)

u s+1.
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Figure 3.1: Schematic presentation of time element obtained from pth-order Hermite
interpolation functions.

Here,
(k)

u s is the known property at t = ts, while
(k)

u s+1 is the unknown property at

t = ts+1. For the completeness of the development procedure, we present the Hermite

interpolation functions for p = 3, 5, 7. For p = 3, the cubic Hermite interpolation

functions are given by

sφ0(t) = 2 t̄3 − 3 t̄2 + 1

sφ1(t) = (t̄3 − 2 t̄2 + t̄)∆t

s+1φ0(t) = −2 t̄3 + 3 t̄2

s+1φ1(t) = (t̄3 − t̄2)∆t

(3.4)
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For p = 5, the quintic Hermite interpolation functions are given by

sφ0(t) = −6 t̄5 + 15 t̄4 − 10 t̄3 + 1

sφ1(t) = (−3 t̄5 + 8 t̄4 − 6 t̄3 + t̄)∆t

sφ2(t) =
1

2
(− t̄5 + 3 t̄4 − 3 t̄3 + t̄2)∆t2

s+1φ0(t) = 6 t̄5 − 15 t̄4 + 10 t̄3

s+1φ1(t) = (−3 t̄5 + 7 t̄4 − 4 t̄3)∆t

s+1φ2(t) =
1

2
(t̄5 − 2 t̄4 + t̄3)∆t2

(3.5)

For p = 7, the septic Hermite interpolation functions are given by

sφ0(t) = 20 t̄7 − 70 t̄6 + 84 t̄5 − 35 t̄4 + 1

sφ1(t) = (10 t̄7 − 36 t̄6 + 45 t̄5 − 20 t̄4 + t̄)∆t

sφ2(t) =
1

2
(4 t̄7 − 15 t̄6 + 20 t̄5 − 10 t̄4 + t̄2)∆t2

sφ3(t) =
1

6
(t̄7 − 4 t̄6 + t̄5 − 4 t̄4 + t̄3)∆t3

s+1φ0(t) = −20 t̄7 + 70 t̄6 − 84 t̄5 + 35 t̄4

s+1φ1(t) = (10 t̄7 − 34 t̄6 + 39 t̄5 − 15 t̄4)∆t

s+1φ2(t) =
1

2
(−4 t̄7 + 13 t̄6 − 14 t̄5 + 5 t̄4)∆t2

s+1φ3(t) =
1

6
(t̄7 − 3 t̄6 + 3 t̄5 − t̄4)∆t3

(3.6)

where, t̄ is the non-dimensional time which is defined as t̄ = t−ts
∆t

, ∆t being the size

of the time interval. Plots of the cubic, quintic, and septic Hermite interpolation

functions are presented in Figures 3.2-3.4.

If ũ given in Eq. (3.3) is substituted into Eq. (3.1), the residual vector is defined
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as

r(t) = M¨̃u(t) + C ˙̃u(t) + Kũ(t)− f̃(t) 6= 0 (3.7)

Note that we also interpolate f(t) as f̃(t) by using the same pth-degree Hermite

interpolation functions used for the approximation of u(t).

3.2.2 Modified Weighted Residual Statement and Dynamic Equilibrium Equations

Majority of the existing higher-order algorithms were developed based on the

weighted residual method. In these algorithms, the traditional weighted residual

statement is used for the minimization of the residual vector. If the traditional

weighted residual statement is employed for the minimization of r(t) given in Eq. (3.7),

r(t) is minimized according to

0 =

∫ ts+1

ts

wi(t) r(t) dt for i = 1, 2, ...,
p+ 1

2
(3.8)

where p is the degree of the Hermite interpolation functions used to approximate

u(t), and wi(t) is the ith weight function. Naturally p+1
2

weight functions should be

used to find p+1
2

unknown nodal variables included in the approximation of u(t). In

traditional methods, total p+1
2
× p weight parameters are needed to restate Eq. (3.8)

in the algebraic form.

On the other hand, we propose two modified weight residual statements which

can be stated as

0 =

∫ ts+1

ts

w(t)
(p−3)

r (t) dt (3.9a)
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0 =

∫ ts+1

ts

w(t)
(p−2)

r (t) dt (3.9b)

where w(t) is the weight function, and
(p−3)

r (t) and
(p−2)

r (t) are

(p−3)

r (t) =
dp−3

dtp−3
r(t) (3.10a)

(p−2)

r (t) =
dp−2

dtp−2
r(t) (3.10b)

Here, two linearly independent relations are obtained from the two different order

differentiations of the residual vector with respect to time as given in Eqs. (3.9a) and

(3.9b). In fact, Gellert [93] already manipulated the first-order time derivative of

the residual vector in the minimization procedure to obtain a linearly independent

relation. In Gellert’s work, the cubic Hermite interpolation functions were used

for the approximation of the displacement vector, and the equation of structural

dynamics was used to define the residual vector. Then, the collocation method was

applied to the residual vector, its first derivative, and its first and second integrals as

the minimization method, and the end of interval was used as the collocation point.

In some sense, our approach and Gellert’s approach share the key idea of obtaining

linearly independent relations, but the specific procedures are quite different.

In our case, it can be shown that the highest degree terms of t in Eqs. (3.10a)

and (3.10b) are always the cubic and quadratic, respectively, regardless of the degree

of the Hermite interpolation functions used. Due to this unconventional approach,

we can always use only three weight parameters to restate Eqs. (3.9a) and (3.9b)

in the algebraic forms, which will make the optimizations of weight parameters very

simple.

There are total p+1
2

unknown nodal variables to be determined if the pth-degree

Hermite interpolation functions are used. Since only two linearly dependent relations
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can be obtained from Eqs. (3.9a) and (3.9b), additional p−3
2

linearly independent

relations are still required. If p = 3, Eqs. (3.9a) and (3.9b) can provide sufficient

number of linearly independent equations because only us+1 and u̇s+1 are unknown

vectors included in the Hermite approximation. However, if p ≥ 5, additional p−3
2

linearly independent relations can be obtained from

dk

dtk

(
Mü(t) + Cu̇(t) + Ku(t)− f(t)

)∣∣∣∣∣
t=ts+1

= 0 for k = 0, 1, ...,
p− 5

2
(3.11)

By using Eq. (3.11) consecutively, the second- and higher-order unknown nodal time

derivatives at t = ts+1 (i.e., üs+1,
...
us+1, ...,

(p−1)/2

u s+1) of Eqs. (3.10a) and (3.10b) can

be stated in terms of us+1 and u̇s+1. Then, us+1 and u̇s+1 can be found by solving

Eqs. (3.9a) and (3.9b). It should be noted that Eq. (3.1) is exactly satisfied at

t = ts+1 through the case k = 0 of Eq. (3.11). Similarly, second- and higher-order

known nodal time derivatives at t = ts can also be stated in terms of us and u̇s by

using

dk

dtk

(
Mü(t) + Cu̇(t) + Ku(t)− f(t)

)∣∣∣∣∣
t=ts

= 0 for k = 0, 1, ...,
p− 5

2
(3.12)

3.2.3 Weight Parameters

To restate the integral forms of the weighted residual statements given in Eqs. (3.9a)

and (3.9b) as the algebraic forms, only three weight parameters are required in our

procedure. These three weight parameters are defined as

θ1 =

∫ ts+1

ts
w(t) t dt

∆t
∫ ts+1

ts
w(t) dt

(3.13a)
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θ2 =

∫ ts+1

ts
w(t) t2 dt

∆t2
∫ ts+1

ts
w(t) dt

(3.13b)

θ3 =

∫ ts+1

ts
w(t) t3 dt

∆t3
∫ ts+1

ts
w(t) dt

(3.13c)

where ∆t = ts+1−ts is the size of the time interval. It should be noted that k = 0 will

always give θ0 = 1, thus θ0 can be regarded as 1. After eliminating the second- and

higher-order nodal time derivatives in Eqs. (3.10a) and (3.10b) by using Eqs. (3.11)

and (3.12) consecutively, we can restate Eqs. (3.10a) and (3.10b) as

0 = Θ1

(
M,C,K,us, u̇s,us+1, u̇s+1,∆t, θ1, θ2, θ3

)
(3.14a)

0 = Θ2

(
M,C,K,us, u̇s,us+1, u̇s+1,∆t, θ1, θ2

)
(3.14b)

where Θ1 and Θ2 are the coupled algebraic vectors of m × 1, m being the size of

Eq. (3.1).

3.2.4 Optimization

In many literatures [8, 20, 49], stability and accuracy analyses of time integration

algorithms have been conducted by using the single-degree-of-freedom problem. We

can also optimize three weight parameters included in Eqs. (3.14a) and (3.14b) by

using a similar procedure and the single-degree-of-freedom problem. We note that

the optimization of the weight parameters in the new algorithms is similar to the

optimization of the weight parameters used in Ref. [59]. The single-degree-of-freedom

problem is given by

ü(t) + 2 ξ ω u̇(t) + ω2 u(t) = f(t) (3.15)
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with the initial conditions of

u(0) = u0 (3.16a)

u̇(0) = v0 (3.16b)

where, u0 and v0 are the initial displacement and velocity. For the homogeneous case

(i.e., f(t) = 0), the exact solution of Eqs. (3.15)-(3.16) is given by

u (t) = exp(−ξωt)
(

cos (ωdt) +
ξω

ωd
sin (ωdt)

)
u0

+
1

ωd
exp(−ξωt) sin (ωdt)v0

(3.17)

and by differentiating u (t) with respect to t once, we obtain the exact velocity

solution

u̇ (t) =− (ξ2ω2 + ωd
2)

ωd
exp(−ξωt) sin (ωdt)u0

+
1

ωd
exp(−ξωt)

(
−ξω sin (ωdt) + ωd cos (ωdt)

)
v0

(3.18)

where ωd =
√

1− ξ2 ω. Now, the exact solutions given in Eqs. (3.17) and (3.18)

can be used to write the exact discrete solutions at t = ∆t. With the given initial

conditions, the exact solution at t = ∆t can be written as

ex1 = eAx0 (3.19)
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where eA, ex1 and x0 are the exact amplification matrix, the exact solution vector,

and the initial condition vector. Here eA, ex1 and x0 can be defined as

ex1 =


eu(∆t)

eu̇(∆t)

 , eA =

eA11(ξ, ω,∆t) eA12(ξ, ω,∆t)

eA21(ξ, ω,∆t) eA22(ξ, ω,∆t)

 , x0 =

u0

v0

 (3.20)

and the entries of eA are given by

eA11 = exp(−ξω∆t)

(
cos (ωd∆t) +

ξω

ωd
sin (ωd∆t)

)
eA12 =

1

ωd
exp(−ξω∆t) sin (ωd∆t)

eA21 =− (ξ2ω2 + ωd
2)

ωd
exp(−ξω∆t) sin (ωd∆t)

eA22 =
1

ωd
exp(−ξω∆t)

(
−ξω sin (ωd∆t) + ωd cos (ωd∆t)

)
(3.21)

Here, eu(∆t) and eu̇(∆t) are the exact displacement and velocity solutions at t =

∆t. Similarly, the numerical solutions obtained by using the algorithms can also be

written in the form of

ax1 = aAx0 (3.22)

where aA and ax1 are the numerical amplification matrix and the numerical solution

vector. ax1, ax0, and aA can be defined as

ax1 =


au(∆t)

au̇(∆t)

 , x0 =

u0

v0


aA =

aA11(ξ, ω,∆t, θ1, θ2, θ3) aA12(ξ, ω,∆t, θ1, θ2, θ3)

aA21(ξ, ω,∆t, θ1, θ2) aA22(ξ, ω,∆t, θ1, θ2)


(3.23)

101



www.manaraa.com

Here, au(∆t) and au̇(∆t) are the numerical displacement and velocity solutions at

t = ∆t. Eqs. (3.14a) and (3.14b) can be directly used to find au(∆t) and au̇(∆t) by

simply setting M = 1, C = 2 ξω, K = ω2, us = u0, vs = v0, us+1 = au(∆t) and

u̇s+1 = av(∆t).

Since we arranged the exact and numerical discrete solutions in the similar forms

given in Eqs. (3.19) and (3.22), the optimization of θ1, θ2 and θ3 can be done by

comparing the entries of eA and aA. For a time integration algorithm to be pth-

order accurate, the highest degree term of ∆t in the Taylor expansion of eAij − aAij

(for i, j = 1, 2) should satisfy

eAij − aAij = O
(
∆t p+1

)
for i, j = 1, 2 (3.24)

If the proposed procedure is used, θ2 can be stated in terms of θ1 to satisfy the

accuracy condition of Eq. (3.24) for any degrees of Hermite approximations. After

selecting θ2 in such a way as to satisfy the accuracy conditions given in Eq. (3.24),

two eigenvalues of aA can be expressed in a complex conjugate form. By setting

ξ = 0 and ω∆t = Ω, two eigenvalues of aA can be written in the form of

λ1,2 = a(θ1, θ3,Ω)±
√
b(θ1, θ3,Ω) (3.25)

where, a and b are proper real numbers. For the eigenvalues to remain complex

conjugate, b ≤ 0 should be provided for all Ω ≥ 0. In the proposed algorithms, this

condition can be simply satisfied by selecting θ3 to satisfy

lim
Ω→∞

b(θ1, θ3,Ω) = 0 (3.26)
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From the condition given in Eq. (3.26), θ3 can also be stated in terms of θ1. At this

point, the last remaining algorithmic parameter is θ1. By selecting θ1 judiciously, the

new algorithms can achieve unconditional stability and dissipation control capability.

To this end, θ1 can be related to the spectral radius in the high frequency limit, which

can be used for the control of algorithmic dissipation. The spectral radius of aA is

defined as

ρ(aA) = max (|λ1|, |λ2|) (3.27)

where |λ1| and |λ2| are the absolute values of λ1 and λ2, respectively. By taking the

limit of the spectral radius given in Eq. (3.27), the ultimate spectral radius is defined

as

µ = lim
Ω→∞

ρ(aA) (3.28)

At last, θ1 can be related to µ by using Eq. (3.28). µ can be chosen as any values

varying from 0 to 1. If µ = 1, the algorithms become non-dissipative, while 0 ≤ µ < 1

will make algorithms dissipative. A user may chose proper values of µ depending

on characteristics of analyses. If a user does not have any information about given

problems, µ = 1 is recommended as the standard case.

Here we present the weight parameters for the 3rd, 5th and 7th Hermite approx-

imations. For the 3rd-degree Hermite approximation, the weight parameters can be

chosen to achieve 3rd-order accuracy (4th-order accuracy is obtained if µ = 1 ) as

θ1 =
µ+ 2

3(µ+ 1)
, θ2 =

2µ2 + 5µ+ 5

9(µ+ 1)2
, θ3 =

2µ3 + 6µ2 + 6µ+ 4

9(µ+ 1)3
(3.29)
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For the 5th-degree Hermite approximation, the weight parameters can be chosen to

achieve 5th-order accuracy (6th-order accuracy is obtained if µ = 1 ) as

θ1 =
2µ+ 3

5(µ+ 1)
, θ2 =

11µ2 + 28µ+ 21

50(µ+ 1)2
, θ3 =

36µ3 + 127µ2 + 158µ+ 79

250(µ+ 1)3
(3.30)

For the 7th-degree Hermite approximation, the weight parameters can be chosen to

achieve 7th-order accuracy (8th-order accuracy is obtained if µ = 1 ) as

θ1 =
3µ+ 4

7(µ+ 1)
, θ2 =

11µ2 + 27µ+ 18

49(µ+ 1)2
, θ3 =

229µ3 + 804µ2 + 981µ+ 436

1715(µ+ 1)3

(3.31)

As stated previously, only three independent weight parameters are required regard-

less the dgree of the approximation in the proposed procedure.

3.2.5 Final Form of Algorithms

After the optimization of the weight parameters, us+1, u̇s+1, ...,
(k−1)

u s+1 can be

stated in terms of us, u̇s, ...,
(k−1)

u s and other known properties by using Eqs. (3.9a) and

(3.9b). The fully discrete equations (without elimination of second- and higher-order
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nodal time derivatives of the displacement vector) can be expressed as



A11 A12 A13 · · · A1k

A21 A22 A23 · · · A2k

K C M

. . . . . . . . .

K C M





us+1

u̇s+1

üs+1

...

(k−1)

u s+1



=



B11 B12 B13 · · · B1k

B21 B22 B23 · · · B2k





us

u̇s

üs

...

(k−1)

u s


+



c1

c2

(0)

f s+1

...
(k−3)

f s+1



(3.32)

where k = p+1
2

, Aij and Bij are matrices which can be defined in terms of M, C, K,

µ, and ∆t; c1 and c2 are vectors which can be defined in terms of f(t), ∆t, and µ.

By using Eq. (3.11), second- and higher-order nodal time derivatives at t = ts+1 in

Eq. (3.32) can be stated in terms of us+1 and u̇s+1 as


(2)

us+1

...

(k−1)

u s+1

 =− [Λ]−1 [∆]

us+1

u̇s+1

+ [Λ]−1


(0)

f s+1

...
(k−3)

f s+1

 (3.33)
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where
(2)

us+1 = üs+1, and matrices [Λ] and [∆] are defined as

[Λ] =



M

C M

K C M

. . . . . . . . .

K C M


, [∆] =



K C

0 K

... 0

...

0 0


(3.34)

Similarly, by using Eq. (3.12), second- and higher-order nodal time derivatives at

t = ts in Eq. (3.32) can also be stated in terms of us and u̇s as


(2)

us

...

(k−1)

u s

 =− [Λ]−1 [∆]

us

u̇s

+ [Λ]−1


(0)

f s

...
(k−3)

f s

 (3.35)

Now Eqs. (3.33) and (3.35) can be used to eliminate the second- and higher-order

nodal time derivatives in Eq. (3.32). By substituting Eqs. (3.33) and (3.35) into

Eq. (3.32), condensed form of algorithm can be obtained as


A11 A12

A21 A22

− [ΓA] [Λ]−1 [∆]


us+1

u̇s+1


=


B11 B12

B21 B22

− [ΓB] [Λ]−1 [∆]


us

u̇s

+ [ΓB] [Λ]−1


(0)

f s

...
(k−3)

f s


+

c1

c2

− [ΓA] [Λ]−1


(0)

f s+1

...
(k−3)

f s+1



(3.36)
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where matrices [ΓA] and [ΓB] are defined as

[ΓA] =

A13 · · · A1k

A23 · · · A2k

 , [ΓB] =

B13 · · · B1k

B23 · · · B2k

 (3.37)

In a practical view point, rewriting Eq. (3.32) as the condensed form given in

Eq. (3.36) can be very beneficial, because any algorithms developed by using the

proposed procedure can be solve in the same way that the 2m×2m system is solved,

if the coefficient matrix of us+1, u̇s+1 in Eq. (3.36) is properly constructed. In the

new algorithms, the coefficient matrix of us+1, u̇s+1 presented in Eq. (3.36) can be

constructed without noticeable increase of computational effort, due to the unique

computational structure of [Λ] as presented in Eq. (3.34). If M is a diagonal ma-

trix, [Λ] given in Eq. (3.34) automatically becomes lower triangular form [94], then

the matrix operations of [ΓA] [Λ]−1 [∆], [ΓB] [Λ]−1 [∆], [ΓA] [Λ]−1 and [ΓB] [Λ]−1 in

Eq. (3.36) can be done very efficiently. Here we present 3rd-, 5th-, and 7th-order

algorithms from the current procedure. The 3rd-order algorithm can be written as

A11 A12

A21 A22


us+1

u̇s+1

 =

B11 B12

B21 B22


us

u̇s

 =

c1

c2

 (3.38)

where,

A11 =
2(µ− 1)

(µ+ 1)(∆t)2
M +

2(µ2 + 4µ+ 1)

3(µ+ 1)2∆t
C +

(2µ+ 1)(µ2 + 4µ+ 7)

9(µ+ 1)3
K

A12 =
2

(µ+ 1)∆t
M− µ− 1

3(µ+ 1)2
C− (µ2 + 4µ+ 1)∆t

9(µ+ 1)3
K

A21 = − 12

(∆t)2
M +

2(µ− 1)

(µ+ 1)∆t
C +

2(µ2 + 4µ+ 1)

3(µ+ 1)2
K
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A22 =
6

∆t
M +

2

(µ+ 1)
C− (µ− 1)∆t

3(µ+ 1)2
K

B11 =
2(µ− 1)

(µ+ 1)(∆t)2
M +

2(µ2 + 4µ+ 1)

3(µ+ 1)2∆t
C− (µ+ 2)(7µ2 + 4µ+ 1)

9(µ+ 1)3
K

B12 =
2µ

(µ+ 1)∆t
M− µ(µ− 1)

3(µ+ 1)2
C− µ(µ2 + 4µ+ 1)∆t

9(µ+ 1)3
K

B21 = − 12

(∆t)2
M +

2(µ− 1)

(µ+ 1)∆t
C +

2(µ2 + 4µ+ 1)

3(µ+ 1)2
K

B22 = − 6

∆t
M +

2µ

(µ+ 1)
C− µ(µ− 1)∆t

3(µ+ 1)2
K

c1 =
(µ+ 2)(7µ2 + 4µ+ 1)

9(µ+ 1)3
fs +

(µ2 + 4µ+ 1)∆t

9(µ+ 1)3
ḟs

+
(2µ+ 1)(µ2 + 4µ+ 7)

9(µ+ 1)3
fs+1 −

(µ2 + 4µ+ 1)∆t

9(µ+ 1)3
ḟs+1

c2 = −2(µ2 + 4µ+ 1)

3(µ+ 1)2
fs +

µ(µ− 1)∆t

3(µ+ 1)2
ḟs +

2(µ2 + 4µ+ 1)

3(µ+ 1)2
fs+1 −

(µ− 1)∆t

3(µ+ 1)2
ḟs+1

The 5th-order algorithm can be written as


A11 A12

A21 A22

−
A13

A23

 [M]−1 [K C]


us+1

u̇s+1


=


B11 B12

B21 B22

−
B13

B23

 [M]−1 [K C]


us

u̇s

+

B13

B23

 [M]−1

fs

ḟs


−

A13

A23

 [M]−1

fs+1

ḟs+1

+

c1

c2



(3.39)

where,

A11 = − 72(µ− 1)

(µ+ 1)(∆t)2
M− 24(µ2 + 8µ+ 1)

5(µ+ 1)2∆t
C +

6(µ− 1)(7µ2 + 26µ+ 7)

25(µ+ 1)3
K
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A12 =
24(µ− 2)

(µ+ 1)∆t
M +

6(3µ2 + 6µ+ 1)

5(µ+ 1)2
C +

6(µ3 + 6µ2 + 25µ+ 8)∆t

25(µ+ 1)3
K

A13 =
12

µ+ 1
M− 6(µ− 1)∆t

5(µ+ 1)2
C− 2(µ2 + 8µ+ 1)(∆t)2

25(µ+ 1)3
K

A21 =
720

(∆t)2
M− 72(µ− 1)

(µ+ 1)∆t
C− 24(µ2 + 8µ+ 1)

5(µ+ 1)2
K

A22 = −360

∆t
M +

24(µ− 2)

µ+ 1
C +

6(3µ2 + 16µ+ 1)∆t

5(µ+ 1)2
K

A23 = 60M +
12∆t

µ+ 1
C− 6(µ− 1)(∆t)2

5(µ+ 1)2
K

B11 = − 72(µ− 1)

(µ+ 1)(∆t)2
M− 24(µ2 + 8µ+ 1)

5(µ+ 1)2∆t
C +

6(µ− 1)(7µ2 + 26µ+ 7)

25(µ+ 1)3
K

B12 = −24(2µ− 1)

(µ+ 1)∆t
M− 6(µ2 + 16µ+ 3)

5(µ+ 1)2
C− 6(8µ3 + 25µ2 + 6µ+ 1)∆t

25(µ+ 1)3
K

B13 = − 12µ

µ+ 1
M +

6µ(µ− 1)∆t

5(µ+ 1)2
C +

2µ(µ2 + 8µ+ 1)(∆t)2

25(µ+ 1)3
K

B21 =
720

(∆t)2
M− 72(µ− 1)

(µ+ 1)∆t
C− 24(µ2 + 8µ+ 1)

5(µ+ 1)2
K

B22 =
360

∆t
M− 24(2µ− 1)

µ+ 1
C− 6(µ2 + 16µ+ 3)∆t

5(µ+ 1)2
K

B23 = 60M− 12µ∆t

µ+ 1
C +

6µ(µ− 1)(∆t)2

5(µ+ 1)2
K

c1 = −6(µ− 1)(7µ2 + 26µ+ 7)

25(µ+ 1)3
fs −

6(8µ3 + 25µ2 + 6µ+ 1)∆t

25(µ+ 1)3
ḟs −

2(µ2 + 8µ+ 1)(∆t)2

25(µ+ 1)3
f̈s

+
6(µ− 1)(7µ2 + 26µ+ 7)

25(µ+ 1)3
fs+1 +

6(µ3 + 6µ2 + 25µ+ 8)∆t

25(µ+ 1)3
ḟs+1 −

2(µ2 + 8µ+ 1)(∆t)2

25(µ+ 1)3
f̈s+1

c2 =
24(µ2 + 8µ+ 1)

5(µ+ 1)2
fs +

6(µ2 + 16µ+ 3)∆t

5(µ+ 1)2
ḟs −

6(µ− 1)(∆t)2

5(µ+ 1)2
f̈s

−24(µ2 + 8µ+ 1)

5(µ+ 1)2
fs+1 +

6(3µ2 + 16µ+ 1)∆t

5(µ+ 1)2
ḟs+1 −

6(µ− 1)(∆t)2

5(µ+ 1)2
f̈s+1
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The 7th-order algorithm can be written as


A11 A12

A21 A22

−
A13 A14

A23 A24


M 0

C M


−1 K C

0 K



us+1

u̇s+1


=


B11 B12

B21 B22

−
B13 B14

B23 B24


M 0

C M


−1 K C

0 K



us

u̇s


+

B13 B14

B23 B24


M 0

C M


−1fs

ḟs


−

A13 A14

A23 A24


M 0

C M


−1fs+1

ḟs+1

+

c1

c2



(3.40)

where

A11 =
7200(µ− 1)

(µ+ 1)(∆t)2
M +

1440(µ2 + 12µ+ 1)

7(µ+ 1)2∆t
C− 360(µ− 1)(9µ2 + 38µ+ 9)

49(µ+ 1)3
K

A12 = −1440(2µ− 3)

(µ+ 1)∆t
M− 360(3µ2 + 24µ+ 1)

7(µ+ 1)2
C +

120(8µ3 + 21µ2 − 66µ− 19)∆t

49(µ+ 1)3
K

A13 =
360(µ− 3)

µ+ 1
M +

120(2µ2 + 13µ− 1)∆t

7(µ+ 1)2
C +

12(4µ3 + 29µ2 + 196µ+ 51)(∆t)2

49(µ+ 1)3
K

A14 =
120∆t

µ+ 1
M− 60(µ− 1)(∆t)2

7(µ+ 1)2
C− 12(µ2 + 12µ+ 1)(∆t)3

49(µ+ 1)3
K

A21 = −100800

(∆t)2
M +

7200(µ− 1)

(µ+ 1)∆t
C +

1440(µ2 + 12µ+ 1)

7(µ+ 1)2
K

A22 =
50400

∆t
M− 1440(2µ− 3)

µ+ 1
C +

360(3µ2 + 24µ+ 1)∆t

7(µ+ 1)2
K

A23 = −10080M +
360(µ− 3)∆t

µ+ 1
C +

120(2µ2 + 13µ− 1)(∆t)2

7(µ+ 1)2
K

A24 = 840∆tM +
120(∆t)2

µ+ 1
C− 60(µ− 1)(∆t)3

7(µ+ 1)2
K
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B11 =
7200(µ− 1)

(µ+ 1)(∆t)2
M +

1440(µ2 + 12µ+ 1)

7(µ+ 1)2∆t
C− 360(µ− 1)(9µ2 + 38µ+ 9)

49(µ+ 1)3
K

B12 =
1440(3µ− 2)

(µ+ 1)∆t
M +

360(µ2 + 24µ+ 3)

7(µ+ 1)2
C− 120(19µ3 + 66µ2 − 21µ− 8)∆t

49(µ+ 1)3
K

B13 =
360(3µ− 1)

µ+ 1
M− 120(µ2 − 13µ− 2)∆t

7(µ+ 1)2
C− 12(51µ3 + 196µ2 + 26µ+ 4)(∆t)2

49(µ+ 1)3
K

B14 =
120∆t

µ+ 1
M− 60(µ− 1)(∆t)2

7(µ+ 1)2
C− 12(µ2 + 12µ+ 1)(∆t)3

49(µ+ 1)3
K

B21 = −100800

(∆t)2
M +

7200(µ− 1)

(µ+ 1)∆t
C +

1440(µ2 + 12µ+ 1)

7(µ+ 1)2
K

B22 = −50400

∆t
M +

1440(3µ− 2)

µ+ 1
C +

360(µ2 + 24µ+ 3)∆t

7(µ+ 1)2
K

B23 = −10080M +
360(3µ− 1)∆t

µ+ 1
C− 120(µ2 − 13µ− 2)(∆t)2

7(µ+ 1)2
K

B24 = −840∆tM +
120(∆t)2

µ+ 1
C− 60(µ− 1)(∆t)3

7(µ+ 1)2
K

c1 =
360(µ− 1)(9µ2 + 38µ+ 9)

49(µ+ 1)3
fs +

120(19µ3 + 66µ2 − 21µ− 8)∆t

49(µ+ 1)3
ḟs

+
12(51µ3 + 196µ2 + 29µ+ 4)(∆t)2

49(µ+ 1)3
f̈s +

12(µ2 + 12µ+ 1)(∆t)3

49(µ+ 1)3

...
f s

−360(µ− 1)(9µ2 + 38µ+ 9)

49(µ+ 1)3
fs+1 +

120(8µ3 + 21µ2 − 66µ− 19)∆t

49(µ+ 1)3
ḟs+1

+
12(4µ3 + 29µ2 + 196µ+ 51)(∆t)2

49(µ+ 1)3
f̈s+1 −

12(µ2 + 12µ+ 1)(∆t)3

49(µ+ 1)3

...
f s+1

c2 = −1440(µ2 + 12µ+ 1)

7(µ+ 1)2
fs −

360(µ2 + 24µ+ 3)∆t

7(µ+ 1)2
ḟs

+
120(µ2 − 13µ− 2)(∆t)2

7(µ+ 1)2
f̈s +

60µ(µ− 1)(∆t)3

7(µ+ 1)2

...
f s

+
1440(µ2 + 12µ+ 1)

7(µ+ 1)2
fs+1 −

360(3µ2 + 24µ+ 1)∆t

7(µ+ 1)2
ḟs+1

+
120(2µ2 + 13µ− 1)(∆t)2

7(µ+ 1)2
f̈s −

60(µ− 1)(∆t)3

7(µ+ 1)2

...
f s+1
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3.2.6 Nonlinear Analysis

To apply the new algorithms to nonlinear analysis, we can consider the semi-

discrete form of nonlinear dynamic system which can be written as

Mü(t) + Cu̇(t) + n(t) = f(t) (3.41)

where, n(t) is the nonlinear internal force vector. To apply the new algorithms to

the semi-discrete governing equation given in Eq. (3.41), it should be rewritten in

a proper form. The simplest admissible modification of Eq. (3.41) can be done by

decomposing n(t) into the linear and nonlinear parts. In many cases, n(t) can be

decomposed as Ku(t) + n̂(t), where Ku(t) is the linear part of n(t), and n̂(t) is the

nonlinear part of n(t). If n(t) = Ku(t) + n̂(t) is used, Eq. (3.41) can be rewritten as

Mü(t) + Cu̇(t) + Ku(t) = f̂(t) (3.42)

where, f̂(t) = f(t) − n̂(t). Then, fs+1, ḟs+1, ...,
(k−1)

f s+1 and fs, ḟs, ...,
(k−1)

f s in Eq. (3.36)

can be replaced by f̂s+1,
˙̂
f s+1, ...,

(k−1)

f̂ s+1 and f̂s,
˙̂
f s, ...,

(k−1)

f̂ s for the nonlinear analysis.

After replacing the force terms, Eq. (3.36) can be solved by using the direct iterative

nonlinear equation solving method. Related discussions can be found in Ref. [95].

However, the decomposition of n(t) may not be possible in some special cases, and

this type of nonlinear analysis can experience poor convergence of nonlinear solutions,

if the nonlinearity is sever. Then one should reduce the size of ∆t to get proper

convergence of nonlinear solutions.
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3.3 Analysis

3.3.1 Stability and Algorithmic Dissipation Control

As discussed previously, we can use the single-degree-of-freedom problem to check

accuracy and stability of the new algorithms. The algorithmic amplification matrix

can be obtained by applying a time integration algorithm to the single-degree-of-

freedom problem, and the spectral radius can also be obtained from the algorithmic

amplification matrix. The spectral radius is defined as the maximum absolute value

of the eigenvalues of ρ(aA), and it can be used as the measure of stability and

dissipation of the algorithm. Thus, we can check stability of the new algorithms

by investigating the variation of the spectral radius for varying values of ∆t
T

, T

being the period of the single-degree-of-freedom problem. An algorithm is said to

be unconditionally stable if 0 ≤ ρ(aA) ≤ 1 is provided. Figure 3.5 shows that the

current algorithms are unconditionally stable if µ is chosen in the range of 0 ≤ µ ≤ 1.

As presented in Figure 3.5, the algorithmic dissipation in the high frequency

limit can also be adjusted as a desired level through the proper specification of µ.

In many practical cases, algorithmic dissipation can be used to filter out spurious

high frequency responds caused due to poor representations of the spatial domain of

original governing PDEs. In the current algorithms, algorithmic dissipations can be

effectively controlled through the specification of µ.

3.3.2 Accuracy

We already imposed desired order of accuracies on algorithms through the op-

timization of the weight parameters by comparing the entries of eA and aA. The

exact and numerical amplification matrices in Eq. (3.24) were obtained by using the

exact and algorithmic discrete solutions stated in terms of the initial conditions. To

define the order of accuracy of an algorithm at any arbitrary time steps, however, a
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proper local error should be defined. In literatures [5, 17, 49], the order of accuracy

of time integration algorithms has been defined between arbitrary sth and (s+ 1)th

time step solutions by utilizing the local truncation error. The local truncation error

of algorithms can be defined as

τe(ts) =
1

∆t2

(
u(ts + ∆t)− 2A1u(ts) + A2u(ts −∆t)

)
(3.43)

where A1 = 1/2 tr(aA), A2 = det(aA), and u(t) is the exact solution of the single-

degree-of-problem given in Eq. (3.17) for the case of f(t) = 0. From Eq. (3.43), the

order of accuracy of an algorithm is defined as kth order if τe = O
(
∆tk

)
is provided.

Again, we note that the order of accuracy of current algorithms obtained from the

pth-degree Hermite interpolation functions is (p − 1)th-order (for 0 ≤ µ < 1) or

pth-order (for µ = 1). Since the pth-degree Hermite approximation includes p+1
2

unknowns, we also define the order of accuracy as (2n − 1)th- and (2n)th-order

accurate, where n = p+1
2

.

The order of accuracy is a mathematically important information of an algorithm,

but it is not a practical measure in most of analyses. Sometimes, the accuracy of an

algorithm is often explained by using more practical measures, such as the relative

period error and the algorithmic damping ratio. The relative period error and the

algorithmic damping ratio can be computed by using the exact solution and the

invariants of the numerical amplification matrix. The relative period error is defined

as
(
T̄ − T

)
/T where, the exact period is T = 2 π/ω and the numerically obtained

period is T̄ = 2π/ω̄. The algorithmic damping ratio is defined as ξ̄ = −ln(A2)/(2 Ω̄).

Here ω̄ = acrtan
(√

A2/A2
1 − 1

)
/
(

∆t
√

1− ξ2
)

and Ω̄ = ω̄ ∆t. The relative period

error and the algorithmic damping ratio are presented in Figs. 3.6 and 3.7.
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3.4 Numerical Examples

3.4.1 Multi-Degree-of-Freedom Spring

Figure 3.8: Description of three degrees of freedom spring system used by Bathe and
Nho.

Bathe and Noh used the three degrees of freedom spring system shown in Fig. 3.8

to represent a simplified version of the complex structural system, which consists

of stiff and flexible parts. The governing equation of the spring system shown in

Fig. 3.8 is given by


m1 0 0

0 m2 0

0 0 m3




a1

a2

a3

+


k1 −k1 0

−k1 k1 + k2 −k2

0 −k2 k2




u1

u2

u3

 =


R1

0

0

 (3.44)

where u1 = sin ωpt and R1 is the reaction force at node 1. The initial conditions

of the zero displacement, velocity, and acceleration vectors (i.e., ui = 0, vi = 0 and

ai = 0 for i = 1, 2, 3) are used. Then by using the prescribed displacement at the

first node, Eq. (3.44) can be reduced to

m2 0

0 m3


a2

a3

+

k1 + k2 −k2

−k2 k2


u2

u3

 =

k1u1

0

 (3.45)
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The high frequency filtering capability of the newly developed higher-order al-

gorithms are tested with the multi-degree-of-freedom spring problem presented in

Fig. 3.8. Here, we solve Eq. (3.45) by using the newly developed higher-order algo-

rithms, the generalized-α method [17], the trapezoidal rule [23], and the Baig and

Bathe method [35]. We use k1 = 106, k2 = 1, m1 = 0, m2 = 1, m3 = 1, and ωp = π

as the data of the problem. With the zero initial conditions, the exact solution of

the second node can be obtained by using the modal analysis as follows:

u2 =1.0000290137708212165 sin (3.1415926535897932385 t)

− 0.0000059792376973407859395 sin (0.99999949999987499995 t)

− 0.0031416189477040356373 sin (1000.0005000003749998 t)

(3.46)

To verify the high frequency filtering capability of the newly developed algorithms,

numerically obtained solutions are compared with the reference solution which was

obtained by eliminating the high frequency mode from the exact modal solution given

in Eq. (3.46). As expected in the analysis of algorithms, Figs. 3.9-3.12 shows that

the current higher-order algorithms can filter out the high frequency very effectively.

Numerical displacement solutions obtained from various methods do not present

noticeable differences, but the current algorithms can provide more accurate velocity

and acceleration solutions than the existing second-order algorithms as presented in

Figs. 3.10 and 3.12.

3.4.2 Two Dimensional Standing Wave Problem

The free vibration type of 2-D standing wave problem is analysed and numerical

solutions are compared with each other to demonstrate the advantage of using the

newly developed higher-order algorithms in long-term analysis. For this analysis, the

8th order algorithm (i.e., the 7th-order algorithm with µ = 1) presented in Eq. (3.40)
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is used.

The 2-D wave equation[82] is given by

ρ
∂2u

∂t2
− ∂

∂x

(
tx
∂u

∂x

)
− ∂

∂y

(
ty
∂u

∂y

)
= 0 (3.47)

with tx = ty = ρ = 12.5.

Figure 3.13: Computational domain and mesh used to analyse 2D wave equation.

For the spatial discretization, the weak form Galerkin method is used, and total

16 (4 by 4) quadratic (9-node) elements are used. The right top quadrant of the whole

domain is chosen as the computational domain with the biaxial symmetric boundary

conditions, as shown in Fig. 3.13. To investigate the effect of mass lumping, the

original and lumped mass matrices are used in the analysis, and obtained numerical
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solutions are compared. As presented in Fig. 3.13, the symmetry boundary conditions

are chosen as

u(a, y, t) = u(x, b, t) =
∂u(a/2, y, t)

∂x
=
∂u(x, b/2, t)

∂y
= 0 (3.48)

where a = 2.0 and b = 1.0. The initial conditions are taken as

u(x, y, 0) =
409.6

π6

n∑
m,n=1,3,5···

{
1

m3n3
sin
(mπx

4

)
sin
(nπy

2

)}
u̇(x , y , 0 ) = 0

(3.49)

The series solution for this 2-D problem is given by

u(x, y, t) =

409.6

π6

n∑
m,n=1,3,5···

{
1

m3n3
cos
(π

4

√
5(m2 + 4n2)t

)
sin
(mπx

4

)
sin
(nπy

2

)} (3.50)

In this numerical experiment, the 8th-order algorithm used ∆t = T/8, whereas

the trapezoidal rule used ∆t = T/80, T being the period of the analytical solution.

Numerical solutions are compared with the analytical solution given in Eq. (3.50) as

presented in Figs. 3.14 and 3.15. As explained previously, each numerical solutions

superposed the analytical solutions at the beginning of vibration as presented in

Fig. 3.14. However, numerical solution obtained from the trapezoidal rule presented

noticeable period error after hundred cycles of vibration as presented in Fig. 3.15.

The numerical solutions obtained from the case of the row proportional mass

lumping [1, 96] have been also presented in Tables 3.1 and 3.2. In this particular

example, use of the lumped mass matrix did not noticeably decrease the quality of

numerical solutions. Thus, a proper mass lumping technique can be used in the
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t exact with original mass matrix with lumped mass matrix

0.2 0.30083333 0.30083316 0.30073439
0.4 0.00000000 -0.15477e-4 -0.10374e-3
0.6 -0.30083333 -0.30085062 -0.30063970
0.8 -0.42666667 -0.42667772 -0.42645930
1.0 -0.30083333 -0.30081412 -0.30091655
1.2 0.00000000 -0.24913e-4 -0.28491e-4
1.4 0.30083333 0.30087182 0.30076441
1.6 0.42666667 0.42667119 0.42642096

Table 3.1: Comparison of center displacements of 2D wave problems for current
8th-order algorithm with original and lumped mass matrices (∆t = 0.2).

t exact with original mass matrix with lumped mass matrix

0.2 0.30083333 0.31209446 0.311900422
0.4 0.00000000 0.30929e-1 0.309691e-1
0.6 -0.30083333 -0.26574260 -0.26555092
0.8 -0.42666667 -0.42096253 -0.42094829
1.0 -0.30083333 -0.35196280 -0.35180152
1.2 0.00000000 -0.94094e-1 -0.941377e-1
1.4 0.30083333 0.21458218 0.21432998
1.6 0.42666667 0.40769570 0.40761813

Table 3.2: Comparison of center displacements of 2D wave problems for Newmark
method (the trapezoidal rule) with original and lumped mass matrices (∆t = 0.2).
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current algorithms if both efficiency and accuracy are required by the nature of the

analysis.

3.5 Conclusion

In this study, the modified weighted residual method and the weight parameters

have been used for the development of the new higher-order time integration algo-

rithms. The displacement vector has been approximated as the linear combination

of the pth-degree Hermite interpolation functions and the corresponding nodal val-

ues of the displacement vector and its time derivatives. The equation of structural

dynamics has been used directly to define the residual vector in time. Then, two

different order time derivatives of the residual vector have been manipulated in the

modified weighted residual statements. Also, the equation of structural dynamics

and its time derivatives were evaluated at the time nodes and they were used to

eliminate the nodal accelerations and higher-order time derivatives of the displace-

ment vector included in the Hermite approximation. The procedure proposed in this

study can be used to construct (p−1)th- and pth-order algorithms, if the pth-degree

Hermite approximation is used.

As a result of the proposed procedure, very unique forms of the result equations

have been obtained. The computer implementation and the equation-solving pro-

cedure can also be helped by the unique forms of the result equations presented in

Eqs. (3.33) - (3.37). In some unconventional spatial discretizations, the mass matrix

can be automatically constructed in a diagonal form. In these cases, the new algo-

rithms become extremely efficient compared to conventional higher-order algorithms.

The numerical experiment conducted with the free vibration of the two-dimensional

standing wave problem showed that the use of the lumped mass matrix did not

altered accuracy of numerical solutions noticeably.
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The result equations given in Eqs. (3.33) - (3.37) contained every information

required for the computer implementation, which was not provided in the existing

weighted residual method based algorithms. Thus, the new algorithms does not

require any additional computation, such as reconstruction of solutions, to advance

a step. As presented in Fig. 3.12, the new algorithms can filter out the spurious high

frequency effects faster, at the same time, providing more accurate important low

frequency solutions compared to the second-order algorithms. They also provided

much better long-term solutions for the choice of large time steps as presented in

Fig. 3.15.

In summary, the new algorithms can provide (a) unconditional stability, (b) con-

trollable algorithmic dissipation, (c) easy computer implementation, and (d) efficient

equation-solving. It is possible to apply the new algorithms to nonlinear analyses, if

the governing equation is rearranged in a proper form.
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4. TIME FINITE ELEMENT METHOD III

4.1 Introduction

Recently, various numerical methods have been used for the development of im-

proved higher-order time integration algorithms which can be applied to the analysis

of structural dynamics. These numerical methods include the Newmark approxima-

tion based methods [37, 38] , the weighted residual method [36, 60], the collocation

method [63, 64], the differential quadrature method [66, 44], and the variational

method [56, 57]. In general, these methods can be used to develop time integration

algorithms of general (2n − 1)th and (2n)th-order accuracy, n being the number of

unknown vectors to be determined.

One common strategy of analysing partial differential equations (PDEs) associ-

ated with structural dynamics is to discretize the spatial domain of the PDEs first

based on separation of variables [1]. After spatially discretizing the PDEs by em-

ploying proper numerical methods, a set of ordinary differential equations (ODEs)

in time is obtained. This set of ODEs is called the semi-discrete equation of motion

[1, 5] or the equation of linear structural dynamics [7, 8]. If the PDEs are linear, the

semi-discrete system can be written as

Mü(t) + Cu̇(t) + Ku(t) = f(t) (4.1)

where M is the mass matrix, C is the viscous damping matrix, K is the stiffness

matrices, f(t) is the vector of applied forces, u(t) is the displacement vector, u̇(t) is

the velocity vector, and ü(t) is the acceleration vector. A solution of the initial value
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problem described by Eq. (4.1) satisfies the following initial conditions

u(0) = u0 (4.2a)

v̇(0) = v0 (4.2b)

where u0 and v0 are the initial displacement and velocity vectors, respectively.

According to Ref. [33], preferable attributes of higher-order time integration al-

gorithms include unconditional stability, controllable algorithmic dissipation, (2n−

1)th- and (2n)th-order accuracy, and full extensibility to nonlinear cases. Among

many of the existing higher-order algorithms, only the algorithms developed based on

the collocation method [71] and the modified differential quadrature method [69, 44]

can satisfy all preferable attributes listed above. Especially, Fung’s modified differ-

ential quadrature method can be used not only for the analysis structural dynamics

(i.e., the second-order initial value problem), but also for other types of initial value

problems, which is not possible in the collocation method. Thus, it can be said

that the time integration algorithms developed based on Fung’s modified differential

quadrature method have the best extensibility among many of the existing higher-

order algorithms as discussed in Ref. [44].

In Fung’s modified quadrature method, (2n − 1)th- and (2n)th-order accurate

algorithms are obtained if n unknown displacement vectors and corresponding n

sampling points are used in the developing procedure. However, optimized sam-

pling points should be determined by finding n roots of the nth-degree polynomial

equation whose coefficients contain a free parameter that controls the algorithmic

dissipation. If the required order of accuracy is higher than fifth (i.e., n ≥ 5), then

the n roots of the nth-degree polynomial equation can be found only numerically for
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every specification of algorithmic dissipation level. In addition to determining the

sampling points, the last sampling point of Fung’s modified differential quadrature

method does not match the end point of the time interval (i.e., tn 6= ts+1). Due to

the mismatch between the last sampling point and the end point of the time interval,

n unknown displacement vectors should be found by solving a fully discrete system

first, then they must be properly interpolated to compute the solution at the end of

time interval to advance a step.

The purpose of this study is to develop a new family of higher-order time in-

tegration algorithms which can eliminate two additional procedures required in the

higher-order algorithms developed based on Fung’s modified quadrature method,

while imitating all preferable features of them. In this study, we present a sys-

tematic and unified procedure which can be used for the development of general

(2n − 1)th-and (2n)th-order accurate algorithms, n being the number of unknown

displacement vectors included in the time finite element approximation.

To this end, a modified weighted residual method which minimizes the resid-

ual vectors and time derivatives of them is considered. We note that Eq. (4.1) is

not directly used in our residual minimization procedure. Instead of directly us-

ing Eq. (4.1) to define the residual vector in time, we rewrite Eq. (4.1) as a set of

two first-order differential equations and one algebraic equation by introducing two

additional variables (i.e., the velocity and acceleration vectors). In our study, the

rewritten set of equations can be called the mixed formulations, and newly introduced

velocity-displacement and acceleration-velocity relations in the mixed formulations

are used to defined two residual vectors in time. Then the two residual vectors can

be directly manipulated in the modified weighted residual statements to find discrete

relations between included time dependent variables (i.e., the displacement, velocity

and acceleration vectors).
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In our case, the unique and advantageous computational structures of the al-

gorithms are achieved through the unconventional manipulation of the velocity-

displacement and acceleration-velocity relations in the mixed formulations. Also,

the weight parameters are used to restate the integral form of the weighted residual

statements as algebraic forms. Then, all preferable attributes of higher-order time

integration algorithms are achieved through the optimization of the weight parame-

ters. Through the optimization procedure, all weight parameters are stated in terms

of one free parameter which can be used for the specification of the algorithmic dissi-

pation levels. Since we use the equal nth-degree Lagrange interpolation functions for

the approximations of all participating variables, determining sampling points and

interpolating solutions are not necessary.

4.2 Development

New higher-order time integration algorithms can be systematically developed by

employing the finite element method for a typical time domain. In the time finite

element method, any time dependent variables can be approximated over the time

interval as linear combinations of interpolation functions and nodal values of time

dependent variables. Here, forms of approximations are very important, because

specific choices of approximations can affect both computational structure and per-

formance of time integration algorithms. The schematic concepts of time elements

are presented in Figs. 4.1 and 4.2. As presented in Fig. 4.2, multiple choices are

allowed for spacings of nodes in the Lagrange interpolation functions. In this study,

the equally spaced nodes and the Gauss-Lobatto quadrature based nodes are consid-

ered for the higher-degree Lagrange interpolation functions. We note that the use

of the Gauss-Lobatto quadrature points based nodes can improve the accuracy of

particular solutions in the presence of higher-order excitations.
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Figure 4.1: Schematic presentation of the time element obtained from the equally
spaced 4th-degree Lagrange interpolations functions.

Figure 4.2: Schematic presentation of the time element obtained from the Gauss-
Lobatto points based 4th-degree Lagrange interpolations functions.
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4.2.1 Lagrange Approximations in Time

We can rewrite the equation of structural dynamics given in Eq. (4.1) as

Ma(t) + Cv(t) + Ku(t) = f(t) (4.3a)

v(t) = u̇(t) (4.3b)

a(t) = v̇(t) (4.3c)

where, v(t) and a(t) are the newly introduced velocity and acceleration vectors in

addition to the displacement vector u(t). A new family of higher-order algorithms

can be developed based on Eqs. (4.3a)-(4.3c). Here, Eqs. (4.3a)-(4.3c) are called

the mixed formulations because they contain three different types of time dependent

variables (i.e., u(t), v(t) and a(t)). It can be observed that the time differentiations

of ü(t) and u̇(t) in Eq. (4.1) have been moved to the additional relations given in

Eqs. (4.3b) and (4.3c). Thus, Eqs. (4.3b) and (4.3c) should be properly discretized in

time, while Eq. (4.3a) can be used for the setting of dynamic equilibrium equations.

Due to the use of the mixed formulations given in Eqs. (4.3a)-(4.3c), equal nth-degree

Lagrange type interpolation functions can be used for the approximations of u(t),

v(t) and a(t) to develop (2n− 1)th- and (2n)th-order accurate algorithms. Over the

time domain ts ≤ t ≤ ts+1, u(t), v(t), and a(t) can be independently approximated

as

u(t) ∼= ū(t) =
n∑
j=0

ψj(t)uj (4.4a)

v(t) ∼= v̄(t) =
n∑
j=0

ψj(t)vj (4.4b)
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a(t) ∼= ā(t) =
n∑
j=0

ψj(t)aj (4.4c)

where ψj(t) is the nth-degree Lagrange interpolation function associated with the

jth node in the time element; uj, vj, and aj are the displacement, velocity and

acceleration vectors associated with the jth node in the time element, respectively.

In a general form, ψj(t) can be written as

ψj(t) =
n∏
k=1
(k 6=j)

t̄− τk
τj − τk (4.5)

where t̄ = t−ts
∆t

, ∆t being the size of the time interval which is defined as ∆t =

ts+1 − ts; τj is the parameter which determines the location of the jth time node as

tj = ts + τj ∆t. In this study, τ0 and τn are always 0 and 1, respectively.

4.2.2 Modified Weighted Residual Statement

As mentioned previously, a modified approach based on the weighted resid-

ual method is considered for the development of new algorithms. By substituting

Eqs. (4.4a) - (4.4c) into Eqs. (4.3b) and (4.3c), two residual vectors (in time) can be

defined as

r1(t) = v̄(t)− ˙̄u(t) (4.6a)

r2(t) = ā(t)− ˙̄v(t) (4.6b)

Then, fully discretized relations can be found by minimizing r1 and r2 over the time

domain (ts ≤ t ≤ ts+1) in the weighted integral sense. If the traditional weighted

residual method is employed, n linearly independent weight functions are required
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accordingly. The traditional weighted residual statements for r1 can be written as

∫ ts+1

ts

wi(t)r1(t) dt = 0 for i = 1, 2, ..., n (4.7)

where n is the degree of the Lagrange interpolation functions, and wi(t) is the ith

weight function in time. In the traditional weighted residual method, n linearly

independent weight functions are required to state v1, ...,vn in terms of u1, ...,un

and the initial conditions (u0 and v0).

Our study, however, uses the modified weighted residual statements, which min-

imize the (i− 1)th-order time derivative of the residual vectors given in Eqs. (4.6a)

and (4.6b). With this unconventional approach, only one weight function can be

used for each of the weighted residual residual statements given in Eqs. (4.6a) and

(4.6b), since the linearly independencies are obtained through different orders of dif-

ferentiations of the residual vectors. The modified weighted residual statements can

be written as

∫ ts+1

ts

w(t)
di−1

dti−1
r1(t) dt = 0 for i = 1, 2, ..., n (4.8a)

∫ ts+1

ts

w(t)
di−1

dti−1
r2(t) dt = 0 for i = 1, 2, ..., n (4.8b)

where, n linearly independent relations are obtained through di−1

dti−1 r1(t) and di−1

dti−1 r2(t),

respectively. The use of Eq. (4.8a) instead of Eq. (4.7) can reduce the number of

weight parameters. As a consequence, the optimization procedure of these parame-

ters can also be simplified.
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4.2.3 Weight Parameters

In general, the weight function w(t) is an arbitrary function in time, and it is not

easy to assess the effect of changing w(t) in Eqs. (4.8a) and (4.8b). However, the

effects of w(t) in Eqs. (4.8a) and (4.8b) can be assessed relatively easily if they are

rewritten in algebraic forms by employing the weight parameters [59, 79]. By using

the the local time τ = t− ts, the weight parameters can be defined as

θk =

∫ ∆t

0
w(τ) τ k dτ

∆tk
∫ ∆t

0
w(τ) dτ

for k = 0, 1, 2, ..., n (4.9)

Since θ0 = 1 for k = 0, we can restate the integral form of the modified weighted

residual statements given in Eqs. (4.8a) and (4.8b) as algebraic forms by using n

weight parameters (i.e., θ1, θ2, θ3, ..., θn), while the traditional weighted residual

statement given in Eq. (4.7) requires n× n weight parameters. Naturally, the opti-

mization of the algorithms based on the traditional weighted residual method may

become very complicated, because more weight parameters should be handled as the

degree of the approximation increases.

To explain the developing procedure of the new algorithms in detail, we consider

the case of the quadratic approximations (i.e., the case of n = 2). If a(t), v(t),

and u(t) are approximated by using the quadratic Lagrange interpolation functions,

Eq. (4.8a) can be restated in terms of the two weight parameters (i.e., θ1 and θ2) as

follows:

∫ ∆t

0

w(τ) r1(τ) dτ = 0

→ (−2 θ2 + 3 θ1 − 1)v0 + (4 θ2 − 4 θ1)v1 + (−2 θ2 + θ1)v2

− 1

∆t
[(−4 θ1 + 3)u0 + (8θ1 − 4)u1 + (−4 θ1 + 1)u2] = 0

(4.10a)
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∫ ∆t

0

w(τ)
dr1(τ)

dt
dτ = 0

→ 1

∆t
[(−4 θ1 + 3)v0 + (8 θ1 − 4)v1 + (−4 θ1 + 1)v2]

− 1

∆t2
(−4 u0 + 8 u1 − 4 u2) = 0

(4.10b)

Similarly, Eq. (4.8b) can also be written as

∫ ∆t

0

w(τ) r2(τ) dτ = 0

→ (−2 θ2 + 3 θ1 − 1)a0 + (4 θ2 − 4 θ1)a1 + (−2 θ2 + θ1)a2

− 1

∆t
[(−4 θ1 + 3)v0 + (8θ1 − 4)v1 + (−4 θ1 + 1)v2] = 0

(4.11a)

∫ ∆t

0

w(τ)
dr2(τ)

dt
dτ = 0

→ 1

∆t
[(−4 θ1 + 3)a0 + (8 θ1 − 4)a1 + (−4 θ1 + 1)a2]

− 1

∆t2
(−4 v0 + 8 v1 − 4 v2) = 0

(4.11b)

In Eqs. (4.10) and (4.11), the vectors with subscript 0,1 and 2 denote that they

are properties associated with time nodes ts, ts + τ1∆t and ts + τ2∆t, respectively.

The discrete relations given in Eqs. (4.10) and (4.11) can be rearranged in more

convenient forms ofv1

v2

 =
1

∆t

 −8 θ21−4 θ1−4 θ2+1

2 θ21−θ2
I

16 θ21−4 θ1−8 θ2+1

8 θ21−2 θ2
I

−4(4 θ21−2 θ1−2 θ2+1)

2 θ21−θ2
I

8 θ21−2 θ1−4 θ2+1

2 θ21−θ2
I


u1

u2


+

1

∆t


16 θ21−12 θ1−8 θ2+3

8 θ21−4 θ2
I

8 θ21−6 θ1−4 θ2+3

2 θ21−θ2
I

u0 +


8 θ21−4 θ1−4 θ2+1

8 θ21−4 θ2
I

2 θ21−2 θ1− θ2+1

2 θ21−θ2
I

v0

(4.12a)
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a1

a2

 =
1

∆t

 −8 θ21−4 θ1−4 θ2+1

2 θ21−θ2
I

16 θ21−4 θ1−8 θ2+1

8 θ21−2 θ2
I

−4(4 θ21−2 θ1−2 θ2+1)

2 θ21−θ2
I

8 θ21−2 θ1−4 θ2+1

2 θ21−θ2
I


v1

v2


+

1

∆t


16 θ21−12 θ1−8 θ2+3

8 θ21−4 θ2
I

8 θ21−6 θ1−4 θ2+3

2 θ21−θ2
I

v0 +


8 θ21−4 θ1−4 θ2+1

8 θ21−4 θ2
I

2 θ21−2 θ1− θ2+1

2 θ21−θ2
I

 a0

(4.12b)

where I is an m by m identity matrix, m being the size of the equation of structural

dynamics given in Eq. (4.1). To obtain the fully discrete equation of Eq. (4.1),

two dynamic equilibrium equations can be obtained by evaluating Eq. (4.3a) at

t = ts + τ1 ∆t and t = ts + τ2∆t, respectively. Then, those equilibrium equations can

be rearranged as

M 0

0 M


a1

a2

+

C 0

0 C


v1

v2

+

K 0

0 K


u1

u2

 =

f1

f2

 (4.13)

where f1 = f(ts + ∆t/2) and f2 = f(ts + ∆t). By using Eqs. (4.12a) and (4.12b), v1,

v2, a1, and a2 can be eliminated from Eq. (4.13). Then Eq. (4.13) can be solved to

find u1 and u2. If the weight parameters (θ1 and θ2) are used without optimization,

only second-order accuracy can be obtained and unconditional stability may not be

guaranteed.

4.2.4 Optimization

Here, we present the optimization procedure of the weight parameters. We can

optimize the weight parameters included in Eqs. (4.12a) and (4.12b) by using the

single-degree-of-freedom problem of

ü(t) + 2 ξ ω u̇(t) + ω2 u(t) = f(t) (4.14)
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with the initial conditions

u(0) = u0 (4.15a)

u̇(0) = v0 (4.15b)

where, u0 and v0 are the initial displacement and velocity. For the homogeneous case

(i.e., f(t) = 0), the exact solution of Eqs. (4.14)-(4.15) is given by

u (t) = exp(−ξωt)
(

cos (ωdt) +
ξω

ωd
sin (ωdt)

)
u0

+
1

ωd
exp(−ξωt) sin (ωdt)v0

(4.16)

and the first-order differentiation of u (t) with respect to t gives the exact velocity of

u̇ (t) =− (ξ2ω2 + ωd
2)

ωd
exp(−ξωt) sin (ωdt)u0

+
1

ωd
exp(−ξωt)

(
−ξω sin (ωdt) + ωd cos (ωdt)

)
v0

(4.17)

where ωd =
√

1− ξ2 ω. Now, the exact solutions given in Eqs. (4.16) and (4.17) can

be used to write the exact discrete solution at t = ∆t as

ex1 = eAx0 (4.18)

where eA, ex1 and x0 are the exact amplification matrix, the exact solution vector

and the initial condition vector. Here eA, ex1 and x0 can be defined as

ex1 =


eu(∆t)

eu̇(∆t)

 , eA =

eA11(ξ, ω,∆t) eA12(ξ, ω,∆t)

eA21(ξ, ω,∆t) eA22(ξ, ω,∆t)

 , x0 =

u0

v0

 (4.19)
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where the specific terms of eA are

eA11 = exp(−ξω∆t)

(
cos (ωd∆t) +

ξω

ωd
sin (ωd∆t)

)
eA12 =

1

ωd
exp(−ξω∆t) sin (ωd∆t)

eA21 =− (ξ2ω2 + ωd
2)

ωd
exp(−ξω∆t) sin (ωd∆t)

eA22 =
1

ωd
exp(−ξω∆t)

(
−ξω sin (ωd∆t) + ωd cos (ωd∆t)

)
(4.20)

Here eu(∆t) and eu̇(∆t) are the exact displacement and velocity solutions at t = ∆t.

Similarly, the discrete displacement and velocity solutions of Eq. (4.14) can be

numerically obtained by using Eqs. (4.12b), (4.12b), and (4.13). Then, these numer-

ically obtained discrete solutions can be rearranged as

ax1 = aAx0 (4.21)

where aA and ax1 are the numerical amplification matrix and the discrete numerical

solution vector, respectively, and x0 is the initial condition vector. For the current

case of n = 2 (i.e., the quadratic approximations of dependent variables), aA and

ax1 are defined as

aA =

aA11(ξ, ω,∆t, θ1, θ2) aA12(ξ, ω,∆t, θ1, θ2)

aA21(ξ, ω,∆t, θ1, θ2) aA22(ξ, ω,∆t, θ1, θ2)


ax1 =


au(∆t)

av(∆t)

 , ax0 =

u0

v0


(4.22)

where au(∆t) and av(∆t) are the numerical displacement and velocity solutions at

t = ∆t. For the current case, Eqs. (4.12)-(4.13) can be directly used to find au(∆t)
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and av(∆t). By setting M = 1, C = 2 ξ ω, K = ω2, u0 = u0, v0 = v0, a0 =

−(2 ξ ω v0 + ξ2 u0), u2 = au(∆t/2), v1 = av(∆t/2), u2 = au(∆t) and v2 = av(∆t), we

can directly obtain Eq. (4.21). For the numerical discrete solution given in Eq. (4.21)

to be (2n−1)th-order accurate, the highest order term of ∆t in the Taylor expansion

of entries of eA− aA should satisfy

eAij − aAij = O
(
∆t p+1

)
for i, j = 1, 2 (4.23)

The numerical discrete solution given in Eq. (4.21) becomes only 2nd-order accu-

rate without proper optimization of θ1 and θ2. The Taylor’s expansion of each entry

of eA− aA can be computed as

eA11 − aA11 =
1

3
ω3ξ

(
6θ2

1 − 3θ1 − 3θ2 + 1
)

∆t3 + O
(
∆t4
)

eA12 − aA12 =
1

6
ω2(2ξ − 1)(2ξ + 1)

(
6θ2

1 − 3θ1 − 3θ2 + 1
)

∆t3 + O
(
∆t4
)

eA21 − aA21 = −1

6
ω4(2ξ − 1)(2ξ + 1)

(
6θ2

1 − 3θ1 − 3θ2 + 1
)

∆t3 + O
(
∆t4
)

eA22 − aA22 = −2

3
ω3ξ(2ξ2 − 1)

(
6θ2

1 − 3θ1 − 3θ2 + 1
)

∆t3 + O
(
∆t4
)

(4.24)

To improve the order of accuracy from 2nd-order to 3rd-order, all terms with ∆t3 in

Eq. (4.24) should be vanished. For this end, θ2 can be chosen as

θ2 = 2 θ2
1 − θ1 +

1

3
(4.25)

If the optimized θ2 given in Eq. (4.25) is used, the Taylor expansion of eAij − aAij
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becomes

eA11 − aA11 = − 1

24
ω4(4ξ2 − 1) (2θ2 − 1) ∆t4 + O

(
∆t5
)

eA12 − aA12 = −1

6
ω3ξ(2ξ2 − 1) (2θ2 − 1) ∆t4 + O

(
∆t5
)

eA21 − aA21 =
1

6
ω5ξ(2ξ2 − 1) (2θ2 − 1) ∆t4 + O

(
∆t5
)

eA22 − aA22 =
1

24
ω4(4ξ2 − 2ξ − 1)(4ξ2 + 2ξ − 1) (2θ2 − 1) ∆t4 + O

(
∆t5
)

(4.26)

Here, θ1 can be chosen as 1
2
, then we can eliminate terms with ∆t4 in Eq. (4.26),

making the algorithm 4th-order accurate. However, this case will make the algorithm

non-dissipative one, and we cannot control dissipations. Since we wish to have a

control of algorithmic dissipation, we stop improving the accuracy of the algorithm,

but θ1 can be selected judiciously for the algorithmic dissipation control. The choice

of θ1 can be helped by manipulating the spectral radius in the high frequency limit.

The spectral radius of aA is defined as

ρ(aA) = max (|λ1|, |λ2|) (4.27)

where λ1 and λ2 are two eigenvalues of aA. We note that ρ(aA) is the measure of

stability and algorithmic dissipation for varying ∆t
T

, T being the period of the given

problem. By using ρ(aA), the ultimate spectral radius is defined as

µ = lim
Ω→∞

ρ(aA) (4.28)

For a practical algorithmic dissipation control, we relate the last remaining weight

parameter (θ1) to the ultimate spectral radius (µ). By using the definition of the
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ultimate spectral radius given in Eq. (4.28), µ can be computed as

µ =
−3 θ1 + 2

−1 + 3 θ1

(4.29)

From Eq. (4.29), θ1 can be selected as

θ1 =
(µ+ 2)

3 (µ+ 1)
(4.30)

Since the unconditional stability condition requires the spectral radius to satisfy

0 ≤ ρ(aA) ≤ 1 for ∆t ≥, µ can also be chosen from the range of 0 ≤ µ ≤ 1. It

should also be noted that the choice of µ = 1 gives θ1 = 1/2 for the case of n = 2,

and µ = 1 satisfies the 4th-order accuracy condition presented in Eq. (4.26).

In this section, we presented the optimization procedure of the quadratic approx-

imation case as a simple example, but this procedure can be extended to general

nth-degree approximations to get (2n − 1)th order accurate algorithms. For nth-

degree Lagrange type approximation, (2n− 1)th-order accuracy can be improved up

to (2n)th-order, if µ = 1 is used.

4.2.5 Gauss-Lobbato Quadrature Points Based Lagrange Interpolation Functions

In the presence of higher-order excitations, such as the trigonometric and ex-

ponential functions, the algorithms obtained from the equally spaced nodal points

cannot provide (2n− 1)th- or (2n)th-order accuracy. However, it should be empha-

sized that this drawback of the algorithms based on the equally spaced Lagrange

interpolation functions can be easily overcame by using the Gauss-Lobbato quadra-

ture points based Lagrange interpolation functions. The algorithms obtained from

the Gauss-Lobbato quadrature points based Lagrange interpolation functions [97]

can provide (2n − 1)th- and (2n)th-order accuracies for particular solutions in the
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Equally Spaced nodes Gauss-Lobbato quadrature point based nodes

τ0 0 0

τ1
1
3

−
√

5
10

+ 1
2

τ2
2
3

√
5

10
+ 1

2

τ3 1 1

Table 4.1: Comparison of nodal spacing parameter τi for equally spaced and Gauss-
Lobbato quadrature points based 3rd-degree Lagrange interpolation functions

presence of higher-order excitations. In the nth degree Lagrange interpolation func-

tions, the location of ith node can be expressed as

ti = ts + τi ∆t for i = 0, 1, 2, ..., n (4.31)

where, τi is the ith node spacing parameter which specifies the location of ith time

node in the time element, and n is the degree of the interpolation functions used.

Specific values of the node spacing parameters for n = 3, 4 are presented in Tables

4.1 and 4.2 and the plots of the associated Lagrange interpolation functions are also

presented in Figures 4.3-4.5.

It should also be noted that the optimization procedure of the weight parameters

is not affected by the choice of the interpolation points in the proposed procedure.

Thus, the optimized weight parameters obtained from the equally spaced Lagrange

approximations case can also be used for the Gauss-Lobbato quadrature points based

Lagrange approximations case, if the degree of approximations are the same. Some

result equations of both cases are presented in the next section.
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Equally Spaced nodes Gauss-Lobbato quadrature point based nodes

τ0 0 0

τ1
1
4

−
√

21
14

+ 1
2

τ2
2
4

1
2

τ3
3
4

√
21

14
+ 1

2

τ4 1 1

Table 4.2: Comparison of nodal spacing parameter τi for equally spaced and Gauss-
Lobbato quadrature points based 4th-degree Lagrange interpolation functions

4.2.6 Final Form of Algorithms

If the nth-degree Lagrange functions are used for the approximations of time

dependent variables (i.e., the displacement, velocity and acceleration vectors of the

semi-discrete equation) in the proposed procedure, the nodal values of the 1st-order

time derivative of the chosen time dependent variable can be expressed as the linear

combination of n nodal values of the variable and two initial conditions. For the

(2n− 1)th-order accurate algorithm, the nodal velocities can be expressed as


v1

...

vn

 =


α11I · · · α1nI

...
...

...

αn1I · · · αnnI




u1

...

un

+


β1I

...

βnI

u0 +


γ1I

...

γnI

v0 (4.32)

where u0 and v0 are the initial displacement and velocity vectors; αij, βi and γi

are the algorithmic coefficients which can be directly defined as linear functions of

µ. It can be observed that the computational structure of the final result given in

Eq. (4.32) is very similar to the result equation of the differential quadrature method

presented in Eq. (1.22).
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The nodal accelerations can be also stated in terms of the nodal velocities and

the initial conditions. The nodal accelerations can be expressed as


a1

...

an

 =


α11I · · · α1nI

...
...

...

αn1I · · · αnnI




v1

...

vn

+


β1I

...

βnI

v0 +


γ1I

...

γnI

 a0 (4.33)

where a0 is the initial acceleration vector. By using Eq. (4.32), the nodal accelerations

given in Eq. (4.33) can be restated in terms of nodal displacements and the initial

conditions as
a1

...

an

 =


ᾱ11I · · · ᾱ1nI

...
...

...

ᾱn1I · · · ᾱnnI




u1

...

un

+


β̄1I

...

β̄nI

u0 +


(γ̄1 + β1)I

...

(γ̄n + βn)I

v0 +


γ1I

...

γnI

 a0

(4.34)

where, ᾱij, β̄i, and γ̄i are computed by using αij, βi, and γi. ᾱij, β̄i, and γ̄i are


ᾱ11I · · · ᾱ1nI

...
...

...

ᾱn1I · · · ᾱnnI

 =


α11I · · · α1nI

...
...

...

αn1I · · · αnnI



α11I · · · α1nI

...
...

...

αn1I · · · αnnI

 (4.35a)


β̄1I

...

β̄nI

 =


α11I · · · α1nI

...
...

αn1I · · · αnnI



β1I

...

βnI

 (4.35b)
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
γ̄1I

...

γ̄nI

 =


α11I · · · α1nI

...
...

...

αn1I · · · αnnI



γ1 I

...

γn I

 (4.35c)

4.2.6.1 Algorithms with the Equally Spaced Lagrange Interpolation Functions

Here, αij, βi, and γi of the 1st, 3rd-, 5th-, 7th-, and 9th-order algorithms obtained

from the equally spaced lagrange interpolation functions are presented. If µ = 1 is

used, each algorithm can provide one order higher accuracy (i.e., the (2n)th-order

accuracy, n being the degree of approximations).

For the 1st-order accurate algorithm, αij, βi, and γi are defined as

[αij] =
1

∆t

[
1 + µ

]
, {βi} =

1

∆t

{
−1− µ

}
, {γi} =

{
−µ
}

(4.36)

For the 3rd-order accurate algorithm, αij, βi, and γi are defined as

[αij] =
1

∆t

 µ+ 1 −1
4
µ+ 3

4

−4µ− 4 µ+ 3


{βi} =

1

∆t

−
3
4
µ− 7

4

3µ+ 1

 , {γi} =

−
1
4
µ− 1

4

µ


(4.37)
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For the 5th-order accurate algorithm, αij, βi, and γi are defined as

[αij] =
1

∆t


1
3
µ+ 11

6
−1

6
µ+ 4

3
1
27
µ− 7

54

−10
3
µ− 10

3
5
3
µ+ 5

3
−10

27
µ+ 26

27

9µ+ 9
2

−9
2
µ− 9 µ+ 11

2



{βi} =
1

∆t


−11

54
µ− 82

27

55
27
µ+ 19

27

−11
2
µ− 1

 , {γi} =


− 1

27
µ− 10

27

10
27
µ+ 1

27

−µ



(4.38)

For the 7h-order accurate algorithm, αij, βi, and γi are defined as

[αij] =
1

∆t



−19
16
µ+ 119

48
57
64
µ+ 105

64
−19

48
µ− 1

16
19
256
µ− 23

768

−3µ− 17
3

9
4
µ+ 9

4
−µ+ 5

3
3
16
µ− 7

48

93
16
µ+ 13

16
−279

64
µ− 327

64
31
16
µ+ 47

16
− 93

256
µ+ 275

256

−16µ− 16
3

12µ+ 12 −16
3
µ− 16 µ+ 25

3



{βi} =
1

∆t



475
768
µ− 1031

256

25
16
µ+ 91

48

−775
256
µ+ 73

256

25
3
µ+ 1


, {γi} =



19
256
µ− 93

256

3
16
µ+ 3

16

− 93
256
µ+ 19

256

µ



(4.39)
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For the 9th-order accurate algorithm, αij, βi, and γi are defined as

[αij ] =
1

∆t



−399
125µ+ 2387

1500
399
125µ+ 374

125 −266
125µ−

41
125

399
500µ−

32
375 − 399

3125µ+ 379
12500

−118
125µ−

2311
250

118
125µ+ 1904

375 −236
375µ+ 63

125
59
250µ+ 109

250 − 118
3125µ−

1933
18750

843
125µ+ 1097

500 −843
125µ−

743
125

562
125µ+ 287

125 −843
500µ+ 283

125
843
3125µ−

2653
12500

−876
125µ+ 572

375
876
125µ+ 226

125 −584
125µ−

984
125

219
125µ+ 1732

375 − 876
3125µ+ 3524

3125

25µ+ 25
4 −25µ− 50

3
50
3 µ+ 25 −25

4 µ− 25 µ+ 137
12



{βi} =
1

∆t



18221
12500µ−

13126
3125

8083
18750µ+ 20811

6250

−38497
12500µ−

1868
3125

10001
3125 µ−

3774
3125

−137
12 µ− 1


, {γi} =



399
3125µ−

876
3125

118
3125µ+ 843

3125

− 843
3125µ−

118
3125

876
3125µ−

399
3125

−µ


(4.40)

4.2.6.2 Algorithms with the Gauss-Lobatto Point Based Lagrange Interpolation

Functions

Here, αij, βi, and γi of the 5th-, 7th- and 9th-order accurate algorithms obtained

from the Gauss-Lobatto quadrature points based Lagrange interpolation functions

are presented. Again, each algorithm can provide one order higher accuracy for the

choice of µ = 1.
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For the 5th-order accurate algorithm, αij, βi, and γi are defined as

[αij] =
1

∆t

µ


1 −3
2

+ 1
2

√
5 − 1

10
+ 1

10

√
5

−3
2
− 1

2

√
5 1 − 1

10
− 1

10

√
5

5
2

+ 5
2

√
5 5

2
− 5

2

√
5 1



+


3
2

+ 1
2

√
5 −1 +

√
5 3

5
− 2

5

√
5

−1−
√

5 3
2
− 1

2

√
5 3

5
+ 2

5

√
5

−5
2

+ 5
2

√
5 −5

2
− 5

2

√
5 6





{βi} =
1

∆t



3
5
µ− 3

5

√
5µ− 11

10
− 11

10

√
5

3
5
µ+ 3

5

√
5µ− 11

10
+ 11

10

√
5

−6µ− 1



{γi} =



1
10
µ− 1

10

√
5µ− 1

10
− 1

10

√
5

1
10
µ+ 1

10

√
5µ− 1

10
+ 1

10

√
5

−µ



(4.41)

156



www.manaraa.com

For the 7th-order accurate algorithm, αij, βi, and γi are defined as

[αij] =
1

∆t


µ



1 −8
7

+ 8
49

√
21 5

2
− 1

2

√
21 − 3

14
+ 3

98

√
21

− 7
32

√
21− 49

32
1 −49

32
+ 7

32

√
21 3

16

5
2

+ 1
2

√
21 − 8

49

√
21− 8

7
1 − 3

98

√
21− 3

14

−7
6

√
21− 49

6
16
3

−49
6

+ 7
6

√
21 1



+



5
2

+ 1
2

√
21 −8

7
+ 88

147

√
21 1− 1

3

√
21 9

7
− 12

49

√
21

−49
32
− 77

96

√
21 1 −49

32
+ 77

96

√
21 − 9

16

1 + 1
3

√
21 −8

7
− 88

147

√
21 5

2
− 1

2

√
21 12

49

√
21 + 9

7

−49
6

+ 7
6

√
21 16

3
−7

6

√
21− 49

6
10





{βi} =
1

∆t



−15
7
µ+ 15

49

√
21µ− 51

14
− 51

98

√
21

15
8
µ+ 21

8

−15
49

√
21µ− 15

7
µ+ 51

98

√
21− 51

14

10µ+ 1



{γi} =



− 3
14
µ+ 3

98

√
21µ− 3

14
− 3

98

√
21

3
16
µ+ 3

16

− 3
98

√
21µ− 3

14
µ+ 3

98

√
21− 3

14

µ


(4.42)
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For the 9th-order accurate algorithm, αij, βi, and γi are defined as

[αij ] =
1

∆t


µ



1.0 −0.3979905070 0.2213383872 −0.1331089586 0.04930278012

−2.512622744 1.0 −0.5561398661 0.3344525970 −0.1238792867

4.517969126 −1.798108823 1.0 −0.6013821654 0.2227484384

−7.512642352 2.989960338 −1.662836143 1.0 −0.3703941540

20.28283188 −8.072374540 4.489369296 −2.699826628 1.0



+



7.512642350 2.056893217 −0.6428201742 0.3070950148 −0.1051682020

−7.960483029 1.798108823 2.505923933 −0.9713311794 0.3166527833

4.085336090 −4.505923934 0.5561398660 3.108061311 −0.8460228092

−2.307095015 2.703646823 −5.268191942 0.1331089586 3.523427116

2.699826629 −4.489369295 8.072374541 −20.28283186 15.0





{βi} =
1

∆t



−0.73954170180µ− 9.128642207

1.85818930050µ+ 4.311128671

−3.3412265760µ− 2.397590522

5.5559123100µ+ 1.215104058

−15.0µ− 1.0



, {γi} =



−0.04930278012µ− 0.3703941540

0.1238792867µ+ 0.2227484384

−0.2227484384µ− 0.1238792867

0.3703941540µ+ 0.04930278012

−µ



(4.43)

4.2.7 Linear Equation Solving Procedure

To find n unknown displacement vectors (i.e., u1, ...,un), we need n dynamic

equilibrium equations, and they can be obtained by evaluating Eq. (4.3a) at ti =

ts + τi ∆t (for i = 1, ..., n). These n equilibrium equations can be written as the

matrix form of


M

. . .

M



a1

...

an

+


C

. . .

C



v1

...

vn

+


K

. . .

K



u1

...

un

 =


f1
...

fn

 (4.44)
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where, ai, vi, ui, and fi are the ith time nodal acceleration, velocity, displacement,

and external force vectors, respectively. Then by substituting Eqs. (4.32) and (4.34)

into Eq. (4.44) we can obtain



ᾱ11M · · · ᾱ1nM

...
...

...

ᾱn1M · · · ᾱnnM

+


α11C · · · α1nC

...
...

...

αn1C · · · αnnC

+


K

. . .

K




u1

...

un



=


f1
...

fn

−

β̄1M + β1C

...

β̄nM + βnC

u0 −


(γ̄1 + β1)M + γ1C

...

(γ̄n + βn)M + γnC

v0 −


γ1M

...

γnM

a0

(4.45)

Now Eq. (4.45) can be solved to find u1, ...,un. However, a0 should be computed as

a0 = M−1 (f0 −Cv0 −Ku0) at t = 0. This initial computation of a0 can be avoided

by utilizing the dynamic equilibrium equation at t = t0 (i.e., Ma0 + Cv0 + Ku0 =

f0). Since the expression of −γiMa0 − γiCv0 in Eq. (4.45) can be replaced by the

expression of γiKu0 − γif0, and we can finally obtain



ᾱ11M · · · ᾱ1nM

...
...

...

ᾱn1M · · · ᾱnnM

+


α11C · · · α1nC

...
...

...

αn1C · · · αnnC

+


K

. . .

K





u1

...

un


=


f1

...

fn

−

β̄1M + β1C− γ1K

...

β̄nM + βnC− γnK

u0 −


(γ̄1 + β1)M

...

(γ̄n + β1)M

v0 −


γ1I

...

γnI

 f0

(4.46)

Here, αij, βi, and γi can be computed by using the results given in Eqs. (4.36)-

(4.42). After finding u1, ...,un by solving Eq. (4.45) or Eq. (4.46), the velocity and

acceleration vectors can also be updated by using Eqs. (4.32) and (4.34). After
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obtaining un, vn, and an, the initial conditions u0, v0, and a0 of Eqs. (4.45), (4.46),

(4.32) and (4.34) should be updated as un, vn, and an to advance another step.

4.2.8 Nonlinear Equation Solving Procedures

As stated previously, the biggest advantage of the differential quadrature method

is direct and intuitive extensibility to nonlinear cases and other types of initial value

problems. Since the computational structures of the result equations obtained from

the proposed procedure are very similar to those of the differential quadrature method

based algorithms as presented in Eqs. (4.32) and (1.22), we can analyse nonlinear

structural dynamics problems and other types of initial value problems by using the

newly developed algorithms without any difficulty. In a general form, the nonlinear

equation of structural dynamics can be written as

M(t)ü(t) + C(t)u̇(t) + n(t) = f(t) (4.47)

with the initial conditions

u(0) = u0 (4.48a)

u̇(0) = v0 (4.48b)

where, M(t) and C(t) are the mass and damping matrices; n(t) is the nonlinear

internal stress related force vector. Note that we are not assuming that the mass

and damping matrices are constants, but they are allowed to contain certain nonlin-

earities.
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4.2.8.1 Direct Iterative Method

The simplest nonlinear equation solving method is the direct iterative method

[4]. In many cases, n(t) can be linearized as K(t)u(t), where K(t) is the lin-

earized nonlinear stiffness matrix. For the nth-degree approximations (i.e., the

(2n − 1)th-order accurate algorithm), n nonlinear dynamic equilibrium equations

at ts + τ1∆t, ..., ts + τn∆t can be written as


M1

. . .

Mn




a1

...

an

+


C1

. . .

Cn




v1

...

vn

+


K1

. . .

Kn




u1

...

un

 =


f1

...

fn


(4.49)

where, Mi, Ci, and Ki are the mass, damping, and stiffness matrices evaluated at

ti = ts + τi ∆t for i = 1, ..., n. After proper linearizations of nonlinearities, it is

assumed that Mi, Ci, and Ki can be computed by using the rth iterative solution

at ith time node. By substituting the nodal acceleration and velocity vectors given

in Eqs. (4.34) and (4.32) into Eq. (4.49), we obtain



ᾱ11M

(r)

1 · · · ᾱ1nM
(r)

1

...
...

...

ᾱn1M
(r)
n · · · ᾱnnM(r)

n

+


α11C

(r)

1 · · ·α1nC
(r)

1

...
...

...

αn1C
(r)
n · · ·αnnC(r)

n

+


K(r)

1

. . .

K(r)
n





u(r+1)

1

...

u(r+1)
n


=


f (r)

1

...

f (r)
n

−

β̄1M

(r)

1 + β1C
(r)

1

...

β̄nM
(r)
n + βnC

(r)
n

u0 −


(γ̄1 + β1)M(r)

1 + γ1C
(r)

1

...

(γ̄n + β1)M(r)
n + γnC

(r)
n

v0 −


γ1M

(r)

1

...

γnM
(r)
n

 a0

(4.50)
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where, properties with the superscript (r) denote that those properties are evaluated

by using the rth iterative solution (i.e., u(r)

1 , ...,u
(r)
n ). In the direct iterative method,

the (r + 1)th iterative solution u(r+1)

1 , ...,u(r+1)
n can be directly obtained by solving

Eq. (4.50). For each time step, finding u(r+1)

1 , ...,u(r+1)
n and evaluating M(r)

i , C(r)

i ,

and K(r)

i should be repeated until properly converged solutions are obtained. Since

the computational structures of linear and nonlinear cases are almost the same, the

direct iterative method can easily be implemented as the computer code by sharing

the linear computer code, once a proper iteration loop is added.

4.2.8.2 Newton-Raphson Iterative Method

For the newly developed algorithms, the Newton-Raphson iterative method [4, 44]

can also be used without any difficulty. In general, the Newton-Raphson method pro-

vides a much faster convergence rate than the direct method. In highly nonlinear

problems, the Newton-Raphson method is recommended instead of the direct iter-

ative method. To apply the Newton-Raphson method to the solving of nonlinear

equations, we define a residual vector caused by the unconverged solutions as

r(t) = M(t)ü(t) + C(t)u̇(t) + n(t)− f(t) (4.51)

and the residual vectors evaluated at the time nodal points can be written as


r1

...

rn

 =


M1

. . .

Mn




ü1

...

ün

+


C1

. . .

Cn




u̇1

...

u̇n

+


n1

...

nn

−


f1

...

fn

 (4.52)

where r1, ..., rn are the residual vectors, ri being the residual vector associated with

the ith time node at t = ts + τi∆t. The Newton-Raphson method can be applied
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to Eq. (4.52) to find u1, ...,un which satisfies r1, ..., rn = {0}. By using the Taylor

expansion of r(t) defined in Eq. (4.51), the residual vectors of the (r+ 1)th iteration

can be stated as
r(r+1)

1

...

r(r+1)
n

 =


r(r)

1

...

r(r)
n

+


∂
∂u

r(t)
∣∣
u=u

(r)
1

. . .

∂
∂u

r(t)
∣∣
u=u

(r)
n




∆u(r)

1

...

∆u(r)
n

 =


0

...

0

 (4.53)

where properties with the super script (r) and (r+1) denote that they are evaluated

by using the rth and (r + 1)th iterative solutions, respectively. In the Newton-

Raphson method, the ith nodal displacement solutions are updated as u(r+1)

i = u(r)

i +

∆u(r)

i . From Eq. (4.53), the incremental equations can be written as


M(r)

1

. . .

M(r)
n




∆ü(r)

1

...

∆ü(r)
n

+


C(r)

1

. . .

C(r)
n




∆u̇(r)

1

...

∆u̇(r)
n


+


T(r)

1

. . .

T(r)
n




∆u(r)

1

...

∆u(r)
n

 = −


r(r)

1

...

r(r)
n



(4.54)

where the tangent matrix associated with ith time node can be computed as

T(r)

i =

(
∂M

∂u
ü +

∂C

∂u
u̇ +

∂n

∂u
− ∂f

∂u

) ∣∣∣∣∣
u=u

(r)
i

for i = 1, 2, ..., n (4.55)
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Then, by using Eqs. (4.34) and (4.32), ∆ü(r)

1 , ...,∆ü(r)
n and ∆u̇(r)

1 , ...,∆u̇(r)
n in Eq. (4.54)

can be stated as
∆u̇(r)

1

...

∆u̇(r)
n

 =


v(r+1)

1

...

v(r+1)
n

−


v(r)

1

...

v(r)
n

 =


α11I · · · α1nI

...
...

...

αn1I · · · αnnI




∆u(r)

1

...

∆u(r)
n

 (4.56a)


∆ü(r)

1

...

∆ü(r)
n

 =


a(r+1)

1

...

a(r+1)
n

−


a(r)

1

...

a(r)
n

 =


ᾱ11I · · · ᾱ1nI

...
...

...

ᾱn1I · · · ᾱnnI




∆u(r)

1

...

∆u(r)
n

 (4.56b)

and the incremental solutions ∆u(r)

1 , ...,∆u(r)
n can be obtained by solving



ᾱ11M

(r)

1 · · · ᾱ1nM
(r)

1

...
...

...

ᾱn1M
(r)
n · · · ᾱnnM(r)

n

+


α11C

(r)

1 · · ·α1nC
(r)

1

...
...

...

αn1C
(r)
n · · ·αnnC(r)

n



+


T(r)

1

. . .

T(r)
n





∆u(r)

1

...

∆u(r)
n

 = −


r(r)

1

...

r(r)
n



(4.57)

After obtaining the incremental solutions ∆u(r)

1 , ...,∆u(r)
n by solving Eq. (4.57), u(r+1)

1 , ...,u(r+1)
n

is updated as


u(r+1)

1

...

u(r+1)
n

 =


u(r)

1

...

u(r)
n

+


∆u(r)

1

...

∆u(r)
n

 (4.58)
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Then v(r+1)

1 , ...,v(r+1)
n and a(r+1)

1 , ..., a(r+1)
n are also updated as


v(r+1)

1

...

v(r+1)
n

 =


α11I · · · α1nI

...
...

...

αn1I · · · αnnI




u(r+1)

1

...

u(r+1)
n

+


β1I

...

βnI

u0 +


γ1I

...

γnI

v0 (4.59a)


a(r+1)

1

...

a(r+1)
n

 =


ᾱ11I · · · ᾱ1nI

...
...

...

ᾱn1I · · · ᾱnnI




u(r+1)

1

...

u(r+1)
n

+


β̄1I

...

β̄nI

u0 +


(γ̄1 + β1)I

...

(γ̄n + βn)I

v0 +


γ1I

...

γnI

 a0

(4.59b)

We note that solutions at the beginning of the iteration (i.e., r = 0) can be guessed

by using the converged solutions of the previous time step to reduce the number

of iterations. Proper guess of solutions can increase the efficiency of both iterative

methods mentioned. In our study we use

u(0)

i = u0 + τi ∆tv0, for i = 1, 2, ..., n (4.60a)

v(0)

i = v0 + τi ∆ta0, for i = 1, 2, ..., n (4.60b)

a(0)

i = a0, for i = 1, 2, ..., n (4.60c)

where u0 = u(ts), v0 = u̇(ts), and a0 = ü(ts).

4.3 Analysis

4.3.1 Stability and Algorithmic Dissipation Control

We can use the single-degree-of-freedom problem given in Eq. (4.14) to check

accuracies and stabilities of time integration algorithms. The algorithmic amplifica-
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tion matrix (aA) can be obtained by applying a chosen time integration algorithm

to the single-degree-of-freedom problem with ξ = 0 and f(t) = 0 (i.e., the undamped

and unforced free vibrating case), and the spectral radius (ρ(aA)) is defined as the

maximum absolute value of the two eigenvalues of aA. Then the stability of the

time integration algorithm can be investigated by checking the spectral radius for

varying values of ∆t
T

, T being the period of the single-degree-of-freedom problem.

A time integration algorithm is said to be unconditionally stable if 0 ≤ ρ(aA) ≤ 1

is satisfied for all values of ∆t. Figure 4.6 shows that the current algorithms are

unconditionally stable if µ is chosen in the range of 0 ≤ µ ≤ 1.

As presented in Figure 4.6, the algorithmic dissipation level in the high frequency

limit can be adjusted through the specification of µ. Algorithmic dissipations can

be used to obtain stable solutions in highly nonlinear problems and to filter out the

spurious high frequency responds caused due to the inaccurate spatial discretizations

of original governing PDEs.

4.3.2 Accuracy

We already imposed desired order of accuracies on the new algorithms through

the optimization of the weight parameters by comparing the entries of the exact

and algorithmic amplification matrices. In fact, the accuracy condition given in

Eq. (4.23) is valid for the numerical solutions of the first step, because it was defined

by comparing the exact and algorithmic amplification matrices defined to relate the

discrete solutions and the initial conditions. To define the order of accuracy of

algorithms at any arbitrary time steps, however, a proper measure of the local error

should be defined. In this case, the local truncation error considered in Refs. [5] can

be used, because it defines the local error by using three adjacent discrete solutions
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at any arbitrary steps. The local truncation error of the algorithm can be defined as

τe(ts) =
1

∆t2

(
u(ts + ∆t)− 2A1u(ts) + A2u(ts −∆t)

)
(4.61)

where A1 = 1
2

tr(aA), and A2 = det(aA), and u(t) is the exact solution of the single-

degree-of-problem given in Eq. (4.16) for the unforced case (i.e., the case of f(t) = 0).

Here, tr(aA) is the trace of aA, and det(aA) is the determinant of aA.

From Eq. (4.61), the order of accuracy of an algorithm is defined as kth-order, if

τe = O
(
∆tk

)
is provided. Again, we note that the order of accuracy of the current

algorithm obtained from the proposed procedure is (2n−1)th-order, if the nth-degree

Lagrange interpolation functions are used for the approximations of time dependent

variables. And (2n) th-order accuracy can be obtained for the non-dissipative case

(i.e., the case of µ = 1).

4.4 Examples

4.4.1 Bi-Material Bar Problem

As a linear example, we consider the elastic bi-material bar problems whose cross

section is unit square. The axial motion of the bar can be described by

ρA
∂2u(x, t)

∂t2
− ∂

∂x

(
E(x)A

∂u(x, t)

∂x

)
= f0, 0 ≤ x ≤ L, t ≥ 0 (4.62)

with the initial and boundary conditions of

u(x, 0) = 0, u̇(x, 0) = 0

u(0, t) = a sin(ωp t), u(L, t) = 0

(4.63)
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Figure 4.9: Description of bi-material bar with continuous excitation on left edge

where dimensionless constant properties of ρ = 1, A = 1, L = 1, f0 = 0 are

commonly used for both sides of the bar. E(x) = E1 is used for the left half of the

bar (0 ≤ x ≤ L/2), and E(x) = E2 is used for the right half of the bar (L/2 < x ≤ L).

For the left edge boundary condition, u(0, t) = a sin(ωp t) are used with a = 1/10

and ωp = 2 π.

For the spatial discretization, the weak-form Galerkin method[58, 1] is employed.

With the quadratic Lagrange approximation of the displacement, the element level

matrices and force vector of the semi-discrete equation are given as

Me =
ρALe

30


4 2 −1

2 16 2

−1 2 4

 , Ce =


0 0 0

0 0 0

0 0 0



Ke =
EeA

3Le


7 −8 1

−8 16 −8

1 −8 7

 , fe =
f0 Le

6


1

4

1



(4.64)

In current case, we use two equal size quadratic elements for spatial discretization.
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Then the assembled global semi-discrete equation is obtained as

1

60



4 2 −1 0 0

2 16 2 0 0

−1 2 8 2 −1

0 0 2 16 2

0 0 −1 2 4





ü1

ü2

ü3

ü4

ü5



+
2

3



7 E1 −8 E1 E1 0 0

−8 E1 16 E1 −8 E1 0 0

E1 −8 E1 7 (E1 + E2) −8 E2 E2

0 0 −8 E2 16 E2 −8 E2

0 0 E2 −8 E2 7 E2





u1

u2

u3

u4

u5


=



0

0

0

0

0



(4.65)

By imposing u1 = 1/10 sin(2 π t), ü1 = −4/10 π2 sin(2 π t), u5 = 0, and ü5 = 0 on

Eq. (4.65), we can reduce Eq. (4.65) to

1

30


8 1 0

1 4 1

0 1 8



ü2

ü3

ü4

+
2

3


16 E1 −8 E1 0

−8 E1 7 (E1 + E2) −8 E2

0 −8 E2 16 E2



u2

u3

u4


=

1

150


80 E1 sin(2 π t) + 2 π2 sin(2 π t)

−10 E1 sin(2 π t)− π2 sin(2 π t)

0



(4.66)

Now, Eq. (4.66) can be used to test new algorithms for varying values of E1 and E2.

Two important performances of new algorithms can be tested by using this lin-

ear problem given in Eq. (4.66). First, we can test the long-term performance of

algorithms. By setting E1 = 10 and E2 = 1, we can synthesize a bi-material bar
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vibration problem that has moderate differences in natural frequencies. It is not

that difficult to find the modal solution of Eq. (4.66), and the modal solution can be

used as a reference solution. Since the main purpose of this problem is to test the

performance of new time integration algorithms, the modal solutions of Eq. (4.66) is

used as the reference solution, instead of the analytical solution of the original PDE

given in Eq. (4.62).

For the first case, we choose a considerably small size of time step for the trape-

zoidal rule and a considerably large size of time step for new algorithms. Usually, the

proper size of ∆t can be determined by using the maximum natural frequency of the

semi-discrete system. For the trapezoidal rule, we use one tenth of the period associ-

ated with the maximum natural frequency. Since the maximum natural frequency of

the first case is 29.0581, the corresponding period is computed as 0.0344138. Then

the time step of the trapezoidal rule can be selected as ∆t = 0.00344138. The time

step of new 10th-order algorithm is selected as ∆t = 0.0860345 (25 times of the time

step of the trapezoidal rule) by considering sizes of the computer memories required

by the trapezoidal rule and the 10th-order algorithm. These typical choices of time

steps can equalize overall computer memories required in each of the methods. To

be specific, the current 10th-order algorithm requires 25 times more memory to store

the effective stiffness compared to the trapezoidal rule, because a 5m× 5m effective

coefficient matrix should be used in the 10th-order algorithm while a m×m effective

coefficient matrix can be used in the trapezoidal rule. The center displacement (u3),

velocity (u̇3) and acceleration (ü3) at t = 100 (after hundred cycles of excitation at

the left edge) are presented in Figs. 4.13-4.15.

As shown in Figs. 4.10 -4.12, two numerical solutions presented almost identical

results for the first period. However, after hundred cycles of excitation, the numerical

solution (especially, the velocity and acceleration solutions) of the trapezoidal rule at
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the center of the bar presented noticeable errors compared with the modal solution,

while the numerical solution of the 10th-order algorithm perfectly superposed the

modal solution as presented in Figs. 4.13 -4.15. Thus, in this long term analysis,

higher-order algorithms can be more advantageous allowing use of much larger time

steps. From Eqs. (4.41) -(4.42), αij, βi and γi of current algorithms can be computed.

For the second case, the high-frequency filtering capability of algorithms is tested

by setting the left half of the bar very stiff. As stated previously, poor spatial dis-

cretization of original PDEs can produce spurious high frequency modes in numerical

solutions. To reproduce a similar situation (i.e., spurious high frequency mode) in

our test problem, we intensionally make the left half of the bar very stiff. In our

numerical experiment, the highest and second highest frequency modes of Eq. (4.66)

are assumed to be the spurious high frequency modes. Similar types of numerical

experiments have been conducted by using discrete mass-spring system problems by

Hilber and Hughes [6].

In fact, high frequency filtering can also be done through post-processing (called

low pass filtering [22]) of numerical solutions, but the use of algorithmic dissipations

has been considered a more practical and safer way than post-processing of numerical

solutions in the literature [36]. In time integration algorithms, the spurious high fre-

quency effect can be filtered out by utilizing controllable algorithmic dissipation with

proper choice of time steps. To get the maximum dissipation in the high frequency

range, we set µ = 0 for the current algorithms.

In the second problems, we use E1 = 5, 000, and all other properties are kept the

same as the first case. To check the high frequency filtering capability, two important

capabilities of algorithms should be observed in their numerical solutions. Most of

all, algorithms should be able to effectively eliminate the assumed spurious high fre-

quency effect, and at the same time they also should be able to present the important
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low frequency mode accurately. Especially, by eliminating all high frequency effects,

we wish to observe that u3 moves along with the prescribed displacement at the left

edge (i.e., u1 = 1/10 sin(2 π t)) as if the left half of the bar is “rigid”.

Three natural frequencies obtained from the modal decomposition analysis of the

fully discrete system given in Eq. (4.66) are 638.295, 198.231, and 6.32324. The

frequency of prescribed excitation at the left edge is 6.28319. We wish to eliminate

the effects associated with the high frequencies 638.295 and 198.231 from numerical

solutions during the time integration, while preserving the effects associated with the

low frequencies 6.32324 and 6.28319 in numerical solutions. For the elimination of

the high frequency effect, we chose ∆t as 0.156667 (= 1
638.295

×100 = 1
198.231

×31.056)

introducing enough algorithmic damping into the two high frequency modes. The

Baig and Bathe method [35, 8] is also used as the second order algorithm case for

the comparison of numerical solutions. The Baig and Bathe method is known to be

one of the most effective second-order algorithms, which can be used for the spurious

high frequency filtering.

It can be observed that the displacement solutions (u3) are almost superposing

each other as presented in Fig. 4.16, however, the velocity and acceleration solutions

(v3 and a3) are showing noticeable differences between algorithms as presented in

Figs. 4.17 -4.19. Especially the acceleration solution obtained from the Baig and

Bathe method presented the largest period error when it is compared with the ref-

erence solution. To fix this, we reduced the size of time step to ∆t/10 in the Baig

and Bathe method, then the high frequency effects were not filtered effectively as

shown in Figs. 4.17 -4.19. Thus, in this particular case, it can be said that the

chosen second-order algorithm cannot give a reasonably good numerical solution by

adjusting the time step. On the other hand, the 7th- and 9th-order algorithms pre-

sented reasonably good numerical solutions eliminating high frequency effects very
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effectively as show in Figs. 4.17 -4.19.

4.4.2 Simple Pendulum

As a nonlinear example, the nonlinear oscillation of the simple pendulum [44] is

considered. The motion of the simple pendulum can be described as

θ̈ + ω2sin(θ) = 0 (4.67)

with the initial angle and the initial angular velocity

θ(0) = θ0 (4.68a)

θ̇(0) = θ̇0 (4.68b)

where, ω =
√
g/L, and θ(t) is the angle between the rod and a vertical line at t. g

is the gravitational constant, and L is the length of the massless rod. In the current

study we assumed a dimensionless case with ω = 1.

This simple pendulum problem is very useful for the test of nonlinear performance

of newly developed time integration algorithms, because important information per-

taining to the problem (such as nonlinear period and maximum angle) can be exactly

obtained with the initial conditions given in Eqs. (4.68a) and (4.68b). In addition

to this, the degree of nonlinearity can also be adjusted by simply adjusting the ini-

tial conditions. Nonlinearity of the problem will become higher if large values of θ0

and θ̇0 are used. In the work of Fung [44, 70], some useful data of this problem have

been exactly computed by manipulating the total energy of the pendulum in motion.

Here, we briefly review useful discussions provided in the work of Fung[44]. For the

pendulum in motion, the total energy (i.e., sum of potential and kinetic energies)

182



www.manaraa.com

F
ig

u
re

4.
16

:
C

om
p
ar

is
on

of
ce

n
te

r
d
is

p
la

ce
m

en
ts

of
th

e
b
i-

m
at

er
ia

l
b
ar

w
it

h
st

iff
an

d
so

ft
p
ar

ts
.

183



www.manaraa.com

F
ig

u
re

4.
17

:
C

om
p
ar

is
on

of
ce

n
te

r
ve

lo
ci

ti
es

of
th

e
b
i-

m
at

er
ia

l
b
ar

w
it

h
st

iff
an

d
so

ft
p
ar

ts
.

184



www.manaraa.com

F
ig

u
re

4.
18

:
C

om
p
ar

is
on

of
ce

n
te

r
ac

ce
le

ra
ti

on
s

of
th

e
b
i-

m
at

er
ia

l
b
ar

w
it

h
st

iff
an

d
so

ft
p
ar

ts
.

185



www.manaraa.com

F
ig

u
re

4.
19

:
E

n
la

rg
ed

p
ic

tu
re

of
F

ig
.

4.
18

.

186



www.manaraa.com

should always be conserved. The total energy can be expressed as

1

2

(
dθ

dt

)2

− ω2 cos(θ) = a constant =
1

2
θ̇2

0 − ω2 cos(θ0) (4.69)

Then, the relation of θ and t can be obtained as

t = ±
∫ θ

θ0

1√
θ̇2

0 + 2 ω2 (cos(ϑ)− cos(θ0))
dϑ (4.70)

where ϑ = θ−θ0. By assuming zero initial angle (θ0 = 0), Eq. (4.70) can be simplified

as

t =± 1∣∣∣θ̇0

∣∣∣
∫ θ

0

1√
1− κ2sin2(ϑ

2
)
dϑ =

2∣∣∣θ̇0

∣∣∣Ei

(
sin

(
ϑ

2

)
, κ

)
(4.71)

where, κ = 2ω/θ̇0 and Ei (z, κ) is the elliptical integral of the first kind. If we assume

that the pendulum keeps oscillating in the plane instead of rotating, the maximum

angle θmax can be computed by setting dθ
dt

= 0 in Eq. (4.69). For the oscillating

pendulum, θmax is computed as

θmax = 2 sin−1

(
θ̇0

2 ω

)
(4.72)

In our case, θmax is determined by the given initial velocity. The exact solution of

the first quarter of the nonlinear period (i.e., Tf = T/4) can also be computed from

Eq. (4.71) by finding values of t for varying values of θ. It should be also noted that

Tf can be directly computed by substituting Eq. (4.72) into Eq. (4.71).

Two cases are considered for the test. First, the initial velocity has been chosen

as θ̇0 =
√

2 to get the maximum angle θmax = 90◦ as shown in
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Fig. 4.20.

Figure 4.20: Oscillation of moderately nonlinear simple pendulum with θmax = 90◦.

Second, the initial velocity has been chosen as θ̇0 = 1.9999992384 to get the

maximum angle θmax = 179.9◦ as shown in Fig. 4.21.

The first case was considered to verify the performance of the current algorithms

and well-known second-order algorithms for a moderate nonlinear case. The nu-

merical solutions obtained from the current 8th- and 10th-order algorithms and two

existing second-order algorithms are compared with the exact solution. For this

moderate nonlinear case, all numerical solutions presented acceptable accuracy as

shown in Fig. 4.22.

The second case was specially intended to demonstrate advantages of using cur-

rent higher-order algorithms in highly nonlinear cases. Since we set the initial velocity

to get the maximum angle of 179.9◦, energy conservation is very critical for the pen-

dulum to continue oscillation in the plane. The pendulum may rotate around the

pivot point, if the total energy of the system slightly increases due to errors caused
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Figure 4.21: Oscillation of highly nonlinear simple pendulum with θmax = 279.9◦.

by time integration algorithms. This interesting case has been presented in Fig. 4.23.

First, we used ∆t = T/10, 000 for the chosen second-order algorithms. Even

though very small time step has been used for second-order algorithms, the pendu-

lum failed to oscillate in the plane in the second-order algorithms tested. However,

the new 8th- and 10th-order algorithms gave very accurate solutions even with con-

siderably large time steps (∆t = T/100).

If a reduced size of time step (i.e., ∆t = T/20, 000) is used for second-order

algorithms, the pendulum did not rotate, but the period errors became noticeable

as presented in Fig. 4.24. For more sophisticated comparison, numerical solutions

obtained from various methods have been presented in Table 4.3 along with the exact

solution.

In Table 4.3, it can be observed that new algorithms can provide much better

accuracy than second-order algorithms for the highly nonlinear case of the pendulum

problem. The numerical result of the new algorithms also presented good agreement

with the equivalent algorithms of Fung [44].
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Method(order of accuracy)
Tf
∆t

θ(Tf ) error = exact−θ(Tf)
exact

exact - 3.139847324 -
current( 5th, µ = 0) 25 3.136116024 -0.118837e-2

50 3.139724061 -0.392578e-4
current( 6th, µ = 1) 25 3.140101399 -0.809196e-4

50 3.139851077 0.119518e-5
current( 7th, µ = 0) 10 3.132065933 0.247827e-2

25 3.139833891 0.427840e-5
current( 8th, µ = 1) 10 3.139011835 0.266092e-3

25 3.139846872 0.144169e-6
current( 9th, µ = 0) 5 3.103983662 -0.114221e-1

10 3.139731676 -0.368326e-4
current(10th, µ = 1) 5 3.128483768 -0.361914e-2

10 3.139848406 0.344411e-6
Fung[44]( 5th, µ = 0) 25 3.135946967 0.124221e-2

50 3.139721358 0.401186e-4
Fung( 6th, µ = 1) 25 3.139656436 0.607953e-4

50 3.139844510 0.896197e-6
Fung( 7th, µ = 0) 10 3.123150250 0.531779e-2

25 3.139834046 0.422900e-5
Fung( 8th, µ = 1) 10 3.140510309 -0.211152e-3

25 3.139847686 -0.115138e-6
Fung( 9th, µ = 0) 5 3.058777884 0.258195e-1

10 3.140080122 0.741430e-4
Fung(10th, µ = 1) 5 3.149078105 0.293988e-2

10 3.139846547 -0.247731e-6
Newmark[23](2nd) 500 3.194151076 0.172950e-1

1,000 3.153421369 0.432315e-2
2,500 3.142019059 0.691669e-3
5,000 3.140390264 0.172919e-3

Baig and Bathe[35](2nd) 500 3.166961328 0.863545e-2
1,000 3.146629692 0.216009e-2
2,500 3.140932907 0.345744e-3
5,000 3.140118751 0.864459e-4

Table 4.3: Comparison of nonlinear numerical solutions at t = T/4 = 8.430255141 for
various methods in highly nonlinear case (θ̇0 = 1.999999238, θmax = 3.139847324).
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4.5 Conclusion

In this study, the unconventional mixed formulation and the modified weighted

residual method have been considered to develop new time integration algorithms.

Due to the unconventional setting of computational framework, newly developed

algorithms can achieve desirable computational structures and provide many prefer-

able attributes (such as unconditional stability, controllable algorithmic dissipation,

improved accuracy, and easy implementation), at the same time, eliminating some

shortcomings of the existing higher-order algorithms as discussed in the text.

Some improvements of new algorithms are:

(1) The new algorithms can be written down in the ready-to-use forms, which

can be readily implemented into computer codes without any additional procedures

or undetermined parameters.

(2) Due to the unique computational framework used, the new algorithms can also

be easily applied to nonlinear problems without any modifications, which is clearly

not possible in the existing algorithms developed based on the traditional weighted

residual method.

(3) Due to the simple and intuitive computational structures of the new algo-

rithms, other types of value problems (other than the second-order initial value

problems) can also be tackled in the same unified manner.

To demonstrate advantages of using new higher-order algorithms, the simple lin-

ear and nonlinear numerical examples were considered. In some extreme situations,

such as the long-term analysis and the fast filtering of the spurious high frequencies,

the existing second-order algorithms could not provide reasonably good predictions,

but use of the higher-order algorithms could. Especially, if the spurious high fre-

quency mode is located relatively close to the important low frequency mode, then
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the range of the admissible sizes of time steps becomes very limited. In this kind of

situation, the second-order algorithms cannot provide good accuracy for the impor-

tant low frequency mode and effective filtering of the spurious high frequency mode

simultaneously, as shown in the second linear example.

As explained in the text, the new algorithms can be easily applied to nonlinear

problems. The direct and Newton-Raphson iterative methods were applied to the

nonlinear equation of structural dynamics without any difficulty. As a nonlinear

example, the highly nonlinear simple pendulum was solved by using the Newton-

Raphson iterative method with various algorithms. For the highly nonlinear simple

pendulum, two well-known second order algorithms (the Newmark method and the

Baig and Bathe method) could not provide reasonable predictions even with very

small time steps, while new higher-order algorithms could provide very accurate so-

lutions even with considerably large size of the time step when solutions are compared

with exactly obtained solution. In this particular problem, less computation time

was taken for the new higher-order algorithms compared with the two second-order

algorithms.
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5. CONCLUSION

5.1 Summary and Concluding Remarks

In this dissertation, one family of second-order time integration algorithm and

two families of higher-order time integration algorithms were developed. New time

integration algorithms have been developed based on the time finite element method

with unconventional computational framework. The main aim of this work has been

to develop new families of time integration algorithms that could provide improved

computational performance and functionality compared with existing second- and

higher-order algorithms.

In Chapter 1, a review of existing second- and higher-order time integration algo-

rithms was presented. The review included not only features of existing algorithms,

but also the numerical methods which had been used to develop them. Recently

developed time integration algorithms were reviewed and evaluated by using com-

monly used preferable attributes. In the review, some of existing time integration

algorithms of major computational significance were selected, and both advantages

and shortcomings of those selected algorithms were stated in detail, along with brief

explanation of numerical methods used to develop them. The motivation and objec-

tive of this study have been stated at the end of the review.

Chapter 2 included a novel second-order time integration algorithm with un-

conditional stability, and controllable algorithmic dissipation. In this chapter some

shortcomings of existing second-order algorithms were identified. To overcome stated

shortcomings of existing second-order algorithms, the collocation method was applied

to the unconventionally rewritten lower-order structural dynamic equation (called

the unconventional mixed formulation). The sub-dividing strategy of the Baig and
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Bathe method has been used, and collocation parameters has been considered for the

mechanism of algorithmic dissipation control. New second-order time integration al-

gorithm could include the Baig and Bathe method and the non-dissipative case as

special cases within a single unified code. Some special traits of a parameter τ was

also discussed. In new time integration algorithm, τ was used to improve the algo-

rithmic damping ratio. Finally, the new algorithm was applied to the linear spring

and the nonlinear FSDT problems. Solutions obtained from the new algorithm pre-

sented improved quality compared with the generalized-α method and the Baig and

Bathe method.

Chapter 3 was one of two chapters devoted to the development of new higher-

order time integration algorithms. A new family of higher-order algorithms has been

developed based on the Hermite approximation in time and the modified weighted

residual method. In this chapter, a modified weighted residual statement was in-

troduced, and the integral form of the modified weighted residual statements were

rewritten in algebraic forms by using weight parameters. After optimizing weight

parameters to achieve improved accuracy and stability, the last remaining weight

parameter was stated in terms of the ultimate spectral radius for the algorithmic

dissipation control. General pth-order algorithms were obtained, if the pth-degree

Hermite interpolation is used for the approximation of the displacement vector. The

final forms of algorithms have been converted into condensed forms which can be

readily implemented as computer code without any ambiguity. Especially, the elim-

ination of the higher-order nodal time derivatives of the displacement was relatively

easy due to the special computational structure of new algorithms. The special

computational structure of new algorithms was obtained by including dynamic equi-

libriums and their time derivatives at the nodal points. As a result, unified 2m×2m

form of condensed result equation was obtained, regardless of the degree of Hermite
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approximation, m being the size of the semi-discrete system. Numerical examples

were used to illustrate the advantages of using newly developed higher-order algo-

rithms for spurious high frequency filtering. Accurate solutions were obtained in the

long-term analysis by using newly developed higher-order algorithms.

In Chapter 4, another family of higher-order time integration algorithms which

had been developed based on the unconventional mixed formulations and the modi-

fied weighted residual method were presented. Use of the mixed formulations allowed

independent approximations for the displacement, velocity, and acceleration vectors,

and the same Lagrange interpolation functions were used. (2n−1)th- and (2n)th or-

der algorithms were obtained with nth-degree Lagrange interpolations. Two residual

vectors were defined by using the time derivatives of the displacement-velocity and

velocity-acceleration relations of the mixed formulations, then the weight parameters

were used to rewrite the integral form of modified weighted residual statements into

algebraic forms. Similar optimization procedure used in chapter 3 was also employed,

and last remaining weight parameter was stated in terms of the ultimate spectral

radius for a user specification type of algorithmic dissipation control. Obtained algo-

rithms were fully extended to nonlinear cases, and specific nonlinear equation solving

procedures were provided. Simple but specially considered numerical examples were

used to demonstrate fundamental limitations of second-order algorithms, and advan-

tages of newly developed higher-order algorithms. Numerical results confirmed that

the proposed algorithms could provide similar level of accuracy of existing equivalent

algorithms, while eliminating some computational shortcomings of them.

5.2 Future Works

In this dissertation several unconventional procedures for the development of im-

proved implicit time integration algorithms for the analysis of structural dynamics
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problems were proposed and extensively stated from a numerical performance view-

point. New time integration algorithms have been analysed and tested to verify their

performance and effectiveness. Since new algorithms were analysed and proved to

be effective through this dissertation, they can be readily used for analyses of more

complicated and challenging problems of structural dynamics.

The future applications would include highly interesting topics of structural dy-

namics such as (a) the transient analysis of the fluid-structure interaction problems,

and (b) the impact and wave propagation problems in functionally graded materials

and structures. The analysis and application of the algorithms presented in chap-

ter 4 were limited to the second-order initial value problems (i.e., the equation of

structural dynamics), and only brief guide lines of using them for the analyses of the

first- and higher-order initial value problems have been provided. However, further

researches regarding the extension of these algorithms to the first- and other higher-

order (i.e., third- or higher-order) initial value problems should be conducted for the

completeness of the study.
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